ﻻ يوجد ملخص باللغة العربية
A challenge for rescue teams when fighting against wildfire in remote areas is the lack of information, such as the size and images of fire areas. As such, live streaming from Unmanned Aerial Vehicles (UAVs), capturing videos of dynamic fire areas, is crucial for firefighter commanders in any location to monitor the fire situation with quick response. The 5G network is a promising wireless technology to support such scenarios. In this paper, we consider a UAV-to-UAV (U2U) communication scenario, where a UAV at a high altitude acts as a mobile base station (UAV-BS) to stream videos from other flying UAV-users (UAV-UEs) through the uplink. Due to the mobility of the UAV-BS and UAV-UEs, it is important to determine the optimal movements and transmission powers for UAV-BSs and UAV-UEs in real-time, so as to maximize the data rate of video transmission with smoothness and low latency, while mitigating the interference according to the dynamics in fire areas and wireless channel conditions. In this paper, we co-design the video resolution, the movement, and the power control of UAV-BS and UAV-UEs to maximize the Quality of Experience (QoE) of real-time video streaming. To learn the Deep Q-Network (DQN) and Actor-Critic (AC) to maximize the QoE of video transmission from all UAV-UEs to a single UAVBS. Simulation results show the effectiveness of our proposed algorithm in terms of the QoE, delay and video smoothness as compared to the Greedy algorithm.
This paper investigates the application of deep deterministic policy gradient (DDPG) to intelligent reflecting surface (IRS) based unmanned aerial vehicles (UAV) assisted non-orthogonal multiple access (NOMA) downlink networks. The deployment of the
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication. However, due to the limitation of their on-board power and flight time, it is challenging to obtain an opti
We consider a cellular network deployment where UAV-to-UAV (U2U) transmit-receive pairs share the same spectrum with the uplink (UL) of cellular ground users (GUEs). For this setup, we focus on analyzing and comparing the performance of two spectrum
To handle the data explosion in the era of internet of things (IoT), it is of interest to investigate the decentralized network, with the aim at relaxing the burden to central server along with keeping data privacy. In this work, we develop a fully d
Unmanned aerial vehicles (UAVs) are capable of serving as aerial base stations (BSs) for providing both cost-effective and on-demand wireless communications. This article investigates dynamic resource allocation of multiple UAVs enabled communication