ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of COVID-19 via Homology of CT-SCAN

313   0   0.0 ( 0 )
 نشر من قبل Sohail Iqbal Dr
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In this worldwide spread of SARS-CoV-2 (COVID-19) infection, it is of utmost importance to detect the disease at an early stage especially in the hot spots of this epidemic. There are more than 110 Million infected cases on the globe, sofar. Due to its promptness and effective results computed tomography (CT)-scan image is preferred to the reverse-transcription polymerase chain reaction (RT-PCR). Early detection and isolation of the patient is the only possible way of controlling the spread of the disease. Automated analysis of CT-Scans can provide enormous support in this process. In this article, We propose a novel approach to detect SARS-CoV-2 using CT-scan images. Our method is based on a very intuitive and natural idea of analyzing shapes, an attempt to mimic a professional medic. We mainly trace SARS-CoV-2 features by quantifying their topological properties. We primarily use a tool called persistent homology, from Topological Data Analysis (TDA), to compute these topological properties. We train and test our model on the SARS-CoV-2 CT-scan dataset citep{soares2020sars}, an open-source dataset, containing 2,481 CT-scans of normal and COVID-19 patients. Our model yielded an overall benchmark F1 score of $99.42% $, accuracy $99.416%$, precision $99.41%$, and recall $99.42%$. The TDA techniques have great potential that can be utilized for efficient and prompt detection of COVID-19. The immense potential of TDA may be exploited in clinics for rapid and safe detection of COVID-19 globally, in particular in the low and middle-income countries where RT-PCR labs and/or kits are in a serious crisis.



قيم البحث

اقرأ أيضاً

Radiologist examination of chest CT is an effective way for screening COVID-19 cases. In this work, we overcome three challenges in the automation of this process: (i) the limited number of supervised positive cases, (ii) the lack of region-based sup ervision, and (iii) the variability across acquisition sites. These challenges are met by incorporating a recent augmentation solution called SnapMix, by a new patch embedding technique, and by performing a test-time stability analysis. The three techniques are complementary and are all based on utilizing the heatmaps produced by the Class Activation Mapping (CAM) explainability method. Compared to the current state of the art, we obtain an increase of five percent in the F1 score on a site with a relatively high number of cases, and a gap twice as large for a site with much fewer training images.
83 - Weijun Tan , Hongwei Guo 2021
We present an automatic COVID1-19 diagnosis framework from lung CT images. The focus is on signal processing and classification on small datasets with efforts putting into exploring data preparation and augmentation to improve the generalization capa bility of the 2D CNN classification models. We propose a unique and effective data augmentation method using multiple Hounsfield Unit (HU) normalization windows. In addition, the original slice image is cropped to exclude background, and a filter is applied to filter out closed-lung images. For the classification network, we choose to use 2D Densenet and Xception with the feature pyramid network (FPN). To further improve the classification accuracy, an ensemble of multiple CNN models and HU windows is used. On the training/validation dataset, we achieve a patient classification accuracy of 93.39%.
3D CT-scan base on chest is one of the controversial topisc of the researcher nowadays. There are many tasks to diagnose the disease through CT-scan images, include Covid19. In this paper, we propose a method that custom and combine Deep Neural Netwo rk to classify the series of 3D CT-scans chest images. In our methods, we experiment with 2 backbones is DenseNet 121 and ResNet 101. In this proposal, we separate the experiment into 2 tasks, one is for 2 backbones combination of ResNet and DenseNet, one is for DenseNet backbones combination.
177 - Nicolas Ewen , Naimul Khan 2021
Neural networks often require large amounts of expert annotated data to train. When changes are made in the process of medical imaging, trained networks may not perform as well, and obtaining large amounts of expert annotations for each change in the imaging process can be time consuming and expensive. Online unsupervised learning is a method that has been proposed to deal with situations where there is a domain shift in incoming data, and a lack of annotations. The aim of this study is to see whether online unsupervised learning can help COVID-19 CT scan classification models adjust to slight domain shifts, when there are no annotations available for the new data. A total of six experiments are performed using three test datasets with differing amounts of domain shift. These experiments compare the performance of the online unsupervised learning strategy to a baseline, as well as comparing how the strategy performs on different domain shifts. Code for online unsupervised learning can be found at this link: https://github.com/Mewtwo/online-unsupervised-learning
169 - Xiaofeng Zhu , Bin Song , Feng Shi 2020
With the rapidly worldwide spread of Coronavirus disease (COVID-19), it is of great importance to conduct early diagnosis of COVID-19 and predict the time that patients might convert to the severe stage, for designing effective treatment plan and red ucing the clinicians workloads. In this study, we propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time, and if yes, predict the possible conversion time that the patient would spend to convert to the severe stage. To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers influence and explore the problem of imbalance classification, and 2) the weight for each feature via a sparsity regularization term to remove the redundant features of high-dimensional data and learn the shared information across the classification task and the regression task. To our knowledge, this study is the first work to predict the disease progression and the conversion time, which could help clinicians to deal with the potential severe cases in time or even save the patients lives. Experimental analysis was conducted on a real data set from two hospitals with 422 chest computed tomography (CT) scans, where 52 cases were converted to severe on average 5.64 days and 34 cases were severe at admission. Results show that our method achieves the best classification (e.g., 85.91% of accuracy) and regression (e.g., 0.462 of the correlation coefficient) performance, compared to all comparison methods. Moreover, our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the converted time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا