ﻻ يوجد ملخص باللغة العربية
The detailed analytical and numerical analysis of the electron spectrum, persistent currents, and their densities for an annulus placed in a constant magnetic field (Corbino disk geometry) is presented. We calculate the current density profiles and study their dependence on the inner and outer radii of the annular. We study evolution of the persistent currents and track their emergence and decay for different limiting cases of such a geometry, starting from a nanodot and ending by a macroscopic circle. Our analytical results for the currents are confirmed by the agreement between the integration of the corresponding current densities and the application of the Byers-Yang formula, when it is applicable. Among other results we find the general expression for the persistent current in a narrow annulus, which in the one channel approximation reproduces the well-known result for quasi-one dimensional mesoscopic metallic ring. Moreover it allows to analyze the multi-channel case of a relatively wide annulus. Our study can be used for more accurate treatment and interpretation of the experimental data with measurements of the persistent currents in different doubly-connected systems.
We propose a Corbino-disk geometry of a graphene membrane under out-of-plane strain deformations as a convenient path to detect pseudo-magnetic and electric fields via electronic transport. The three-fold symmetric pseudo-magnetic field changes sign
We have measured the diffusion thermopower of a quantum Hall system in a Corbino setup. A concentric electron-temperature gradient is introduced by irradiating microwaves, via a coplanar waveguide, near the outer rim of a circular mesa of a two-dimen
We have measured magnetoresistance of suspended graphene in the Corbino geometry at magnetic fields up to $B=0.15,$T, i.e., in a regime uninfluenced by Shubnikov-de Haas oscillations. The low-temperature relative magnetotoresistance $[R(B)-R(0)]/R(0)
In this work, we investigate the spectra in an Aharonov-Bohm quantum-ring interferometer forming a Josephson junction between two topological superconductors (TSC) nanowires. The TSCs host Majorana bound states at their edges, and both the magnetic f
Using the Onsager relation between electric and heat transport coefficients, and considering the very different roles played by the quantum Hall condensate and quasiparticles in transport, we argue that near the center of a quantum Hall plateau therm