ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved large scales interstellar dust foreground model and CMB solar dipole measurement

67   0   0.0 ( 0 )
 نشر من قبل Jean-Marc Delouis
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cosmic Microwave Background anisotropies are difficult to measure at large angular scales. In this paper, we present a new analysis of the Planck High Frequency Instrument data that brings the cosmological part and its major foreground signal close to the detector noise. The solar dipole signal, induced by the motion of the solar system with respect to the CMB, is a very efficient tool to calibrate a detector or a set of detectors with high accuracy. In this work, the solar dipole signal is used to extract corrections of the frequency maps offsets reducing significantly uncertainties. The solar dipole parameters are refined together with the improvement of the high frequency foregrounds, and of the CMB large scales cosmological anisotropies. The stability of the solar dipole parameters is a powerful way to control the galactic foregrounds removal in the component separation process. It is used to build a model for Spectral Energy Distribution spatial variations of the interstellar dust emission. The knowledge of these variations will help future CMB analyses in intensity, and also in polarization to measure faint signal related to the optical reionization depth and the tensor-to-scalar ratio of the primordial anisotropies. The results of this work are: improved solar dipole parameters, a new interstellar dust model, and a large scale cosmological anisotropies map.

قيم البحث

اقرأ أيضاً

The upcoming generation of cosmic microwave background (CMB) experiments face a major challenge in detecting the weak cosmic B-mode signature predicted as a product of primordial gravitational waves. To achieve the required sensitivity these experime nts must have impressive control of systematic effects and detailed understanding of the foreground emission that will influence the signal. In this paper, we present templates of the intensity and polarisation of emission from one of the main Galactic foregrounds, interstellar dust. These are produced using a model which includes a 3D description of the Galactic magnetic field, examining both large and small scales. We also include in the model the details of the dust density, grain alignment and the intrinsic polarisation of the emission from an individual grain. We present here Stokes parameter template maps at 150GHz and provide an on-line repository (http://www.imperial.ac.uk/people/c.contaldi/fgpol) for these and additional maps at frequencies that will be targeted by upcoming experiments such as EBEX, Spider and SPTpol.
Circular polarization of the Cosmic Microwave Background (CMB) offers the possibility of detecting rotations of the universe and magnetic fields in the primeval universe or in distant clusters of galaxies. We used the Milano Polarimeter (MIPOL) insta lled at the Testa Grigia Observatory, on the italian Alps, to improve the existing upper limits to the CMB circular polarization at large angular scales. We obtain 95% confidence level upper limits to the degree of the CMB circular polarization ranging between 5.0x10^{-4} and 0.7x10^{-4} at angular scales between 8 and 24 deg, improving by one order of magnitude preexisting upper limits at large angular scales. Our results are still far from the nK region where today expectations place the amplitude of the V Stokes parameter used to characterize circular polarization of the CMB but improve the preexisting limit at similar angular scales. Our observations offered also the opportunity of characterizing the atmospheric emission at 33 GHz at the Testa Grigia Observatory.
The characterization of the dust polarization foreground to the Cosmic Microwave Background (CMB) is a necessary step towards the detection of the B-mode signal associated with primordial gravitational waves. We present a method to simulate maps of p olarized dust emission on the sphere, similarly to what is done for the CMB anisotropies. This method builds on the understanding of Galactic polarization stemming from the analysis of Planck data. It relates the dust polarization sky to the structure of the Galactic magnetic field and its coupling with interstellar matter and turbulence. The Galactic magnetic field is modelled as a superposition of a mean uniform field and a random component with a power-law power spectrum of exponent $alpha_{rm M}$. The model parameters are constrained to fit the power spectra of dust polarization EE, BB and TE measured using Planck data. We find that the slopes of the E and B power spectra of dust polarization are matched for $alpha_{rm M} = -2.5$. The model allows us to compute multiple realizations of the Stokes Q and U maps for different realizations of the random component of the magnetic field, and to quantify the variance of dust polarization spectra for any given sky area outside of the Galactic plane. The simulations reproduce the scaling relation between the dust polarization power and the mean total dust intensity including the observed dispersion around the mean relation. We also propose a method to carry out multi-frequency simulations including the decorrelation measured recently by Planck, using a given covariance matrix of the polarization maps. These simulations are well suited to optimize component separation methods and to quantify the confidence with which the dust and CMB B-modes can be separated in present and future experiments. We also provide an astrophysical perspective on our modeling of the dust polarization spectra.
Science opportunities and recommendations concerning optical/infrared polarimetry for the upcoming decade in the field of cosmology. Community-based White Paper to Astro2010 in response to the call for such papers.
Using Planck polarization data, we search for and constrain spatial variations of the polarized dust foreground for cosmic microwave background (CMB) observations, specifically in its spectral index, $beta_d$. Failure to account for such variations w ill cause errors in the foreground cleaning that propagate into errors on cosmological parameter recovery from the cleaned CMB map. It is unclear how robust prior studies of the Planck data which constrained $beta_d$ variations are due to challenges with noise modeling, residual systematics, and priors. To clarify constraints on $beta_d$ and its variation, we employ two pixel space analyses of the polarized dust foreground at $>3.7^{circ}$ scales on $approx 60%$ of the sky at high Galactic latitudes. A template fitting method, which measures $beta_d$ over three regions of $approx 20%$ of the sky, does not find significant deviations from an uniform $beta_d = 1.55$, consistent with prior Planck determinations. An additional analysis in these regions, based on multifrequency fits to a dust and CMB model per pixel, puts limits on $sigma_{beta_d}$, the Gaussian spatial variation in $beta_d$. At the highest latitudes, the data support $sigma_{beta_d}$ up to $0.45$, $0.30$ at mid-latitudes, and $0.15$ at low-latitudes. We also demonstrate that care must be taken when interpreting the current Planck constraints, $beta_d$ maps, and noise simulations. Due to residual systematics and low dust signal to noise at high latitudes, forecasts for ongoing and future missions should include the possibility of large values of $sigma_{beta_d}$ as estimated in this paper, based on current polarization data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا