ترغب بنشر مسار تعليمي؟ اضغط هنا

Cygnus X-1 contains a 21-solar mass black hole -- implications for massive star winds

84   0   0.0 ( 0 )
 نشر من قبل James Miller-Jones
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of massive stars is influenced by the mass lost to stellar winds over their lifetimes. These winds limit the masses of the stellar remnants (such as black holes) that the stars ultimately produce. We use radio astrometry to refine the distance to the black hole X-ray binary Cygnus X-1, which we find to be $2.22^{+0.18}_{-0.17}$ kiloparsecs. When combined with previous optical data, this implies a black hole mass of $21.2pm2.2$ solar masses, higher than previous measurements. The formation of such a high-mass black hole in a high-metallicity system constrains wind mass loss from massive stars.



قيم البحث

اقرأ أيضاً

190 - Joseph Neilsen 2013
In the last decade, high-resolution X-ray spectroscopy has revolutionized our understanding of the role of accretion disk winds in black hole X-ray binaries. Here I present a brief review of the state of wind studies in black hole X-ray binaries, foc using on recent arguments that disk winds are not only extremely massive, but also highly variable. I show how new and archival observations at high timing and spectral resolution continue to highlight the intricate links between the inner accretion flow, relativistic jets, and accretion disk winds. Finally, I discuss methods to infer the driving mechanisms of observed disk winds and their implications for connections between mass accretion and ejection processes.
The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Buil ding on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black holes accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a/M>0.95 (3sigma). For a less probable (synchronous) dynamical model, we find a/M>0.92 (3sigma). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disks low luminosity.
119 - V. Grinberg , N. Hell , J. Wilms 2013
The knowledge of the spectral state of a black hole is essential for the interpretation of data from black holes in terms of their emission models. Based on pointed observations of Cyg X-1 with the Rossi X-ray timing Explorer (RXTE) that are used to classify simultaneous RXTE-ASM observations, we develop a scheme based on RXTE -ASM colors and count rates that can be used to classify all observations of this canonical black hole that were performed between 1996 and 2011. We show that a simple count rate criterion, as used previously, leads to a significantly higher fraction of misclassified observations. This scheme enables us to classify single INTEGRAL-IBIS science windows and to obtain summed spectra for the soft, intermediate and hard state with low contamination by other states.
Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the INTEGRAL/IBIS telescope. Spectral modeling of the data reveals two emission mechanisms: The 250-400 keV data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.
The relative phasing of the X-ray eclipse ephemeris and optical radial velocity (RV) curve for the X-ray binary IC10 X-1 suggests the He[$lambda$4686] emission-line originates in a shadowed sector of the stellar wind that avoids ionization by X-rays from the compact object. The line attains maximum blueshift when the wind is directly toward us at mid X-ray eclipse, as is also seen in Cygnus X-3. If the RV curve is unrelated to stellar motion, evidence for a massive black hole evaporates because the mass function of the binary is unknown. The reported X-ray luminosity, spectrum, slow QPO, and broad eclipses caused by absorption/scattering in the WR wind are all consistent with either a low-stellar-mass BH or a NS. For a NS, the centre of mass lies inside the WR envelope whose motion is then far below the observed 370 km/s RV amplitude, while the velocity of the compact object is as high as 600 km/s. The resulting 0.4% doppler variation of X-ray spectral lines could be confirmed by missions in development. These arguments also apply to other putative BH binaries whose RV and eclipse curves are not yet phase-connected. Theories of BH formation and predicted rates of gravitational wave sources may need revision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا