ﻻ يوجد ملخص باللغة العربية
Beyond standard model (BSM) particles should be included in effective field theory in order to compute the scattering amplitudes involving these extra particles. We formulate an extension of Higgs effective field theory which contains arbitrary number of scalar and fermion fields with arbitrary electric and chromoelectric charges. The BSM Higgs sector is described by using the non-linear sigma model in a manner consistent with the spontaneous electroweak symmetry breaking. The chiral order counting rule is arranged consistently with the loop expansion. The leading order Lagrangian is organized in accord with the chiral order counting rule. We use a geometrical language to describe the particle interactions. The parametrization redundancy in the effective Lagrangian is resolved by describing the on-shell scattering amplitudes only with the covariant quantities in the scalar/fermion field space. We introduce a useful coordinate (normal coordinate), which simplifies the computations of the on-shell amplitudes significantly. We show the high energy behaviors of the scattering amplitudes determine the curvature tensors in the scalar/fermion field space. The massive spinor-wavefunction formalism is shown to be useful in the computations of on-shell helicity amplitudes.
We apply on-shell methods to the bottom-up construction of electroweak amplitudes, allowing for both renormalizable and non-renormalizable interactions. We use the little-group covariant massive-spinor formalism, and flesh out some of its details alo
We formulate a generalization of Higgs effective field theory (HEFT) including arbitrary number of extra neutral and charged Higgs bosons (generalized HEFT, GHEFT) to describe non-minimal electroweak symmetry breaking models. Using the geometrical fo
We consider the phenomenological implications of charged scalar extensions of the SM Higgs sector in addition to EFT couplings of this new state to SM matter. We perform a detailed investigation of modifications of loop-induced decays of the 125 GeV
The off-shell one-loop renormalization of a Higgs effective field theory possessing a scalar potential $simleft(Phi^daggerPhi-frac{v^2}2right)^N$ with $N$ arbitrary is presented. This is achieved by renormalizing the theory once reformulated in terms
We review some of the modern approaches to scattering amplitude computations in QCD and their application to precision LHC phenomenology. We emphasise the usefulness of momentum twistor variables in parameterising general amplitudes.