ﻻ يوجد ملخص باللغة العربية
In recent years the number of CubeSats (U-class spacecrafts) launched into space has increased exponentially marking the dawn of the nanosatellite technology. In general these satellites have a much smaller mass budget compared to conventional scientific satellites which limits shielding of scientific instruments against direct and indirect radiation in space. In this paper we present a simulation framework to quantify the signal in large field-of-view gamma-ray scintillation detectors of satellites induced by X-ray/gamma-ray transients, by taking into account the response of the detector. Furthermore, we quantify the signal induced by X-ray and particle background sources at a Low-Earth Orbit outside South Atlantic Anomaly and polar regions. Finally, we calculate the signal-to-noise ratio taking into account different energy threshold levels. Our simulation can be used to optimize material composition and predict detectability of various astrophysical sources by CubeSats. We apply the developed simulation to a satellite belonging to a planned CAMELOT CubeSat constellation. This project mainly aims to detect short and long gamma-ray bursts (GRBs) and as a secondary science objective, to detect soft gamma-ray repeaters (SGRs) and terrestrial gamma-ray flashes (TGFs). The simulation includes a detailed computer-aided design (CAD) model of the satellite to take into account the interaction of particles with the material of the satellite as accurately as possible. Results of our simulations predict that CubeSats can complement the large space observatories in high-energy astrophysics for observations of GRBs, SGRs and TGFs. For the detectors planned to be on board of the CAMELOT CubeSats the simulations show that detections with signal-to-noise ratio of at least 9 for median GRB and SGR fluxes are achievable.
The CRESST experiment monitors 300g CaWO_4 crystals as targets for particle interactions in an ultra low background environment. In this paper, we analyze the background spectra that are recorded by three detectors over many weeks of data taking. Und
It has been established that Gamma-Ray Bursts (GRB) can produce Very High Energy radiation (E > 100 GeV), opening a new window on the investigation of particle acceleration and radiation properties in the most energetic domain. We expect that next-ge
The ATHENA X-ray Observatory-IXO is a planned multinational orbiting X-ray observatory with a focal length of 11.5m. ATHENA aims to perform pointed observations in an energy range from 0.1 keV to 15 keV with high sensitivity. For high spatial and tim
The detection of photons above 10 keV through MeV and GeV energies is challenging due to the penetrating nature of the radiation, which can require large detector volumes, resulting in correspondingly high background. In this energy range, most detec
The timing-based localization, which utilize the triangulation principle with the different arrival time of gamma-ray photons, with a fleet of Cubesats is a unique and powerful solution for the future all-sky gamma-ray observation, which is a key for