ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bounded-Confidence Model of Opinion Dynamics on Hypergraphs

151   0   0.0 ( 0 )
 نشر من قبل Mason A. Porter
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Peoples opinions evolve over time as they interact with their friends, family, colleagues, and others. In the study of opinion dynamics on networks, one often encodes interactions between people in the form of dyadic relationships, but many social interactions in real life are polyadic (i.e., they involve three or more people). In this paper, we extend an asynchronous bounded-confidence model (BCM) on graphs, in which nodes are connected pairwise by edges, to an asynchronous BCM on hypergraphs, in which arbitrarily many nodes can be connected by a single hyperedge. We show that our hypergraph BCM converges to consensus under a wide range of initial conditions for the opinions of the nodes, including for non-uniform and asymmetric initial opinion distributions. We also show that, under suitable conditions, echo chambers can form on hypergraphs with community structure. We demonstrate that the opinions of individuals can sometimes jump from one opinion cluster to another in a single time step, a phenomenon (which we call ``opinion jumping) that is not possible in standard dyadic BCMs. Additionally, we observe that there is a phase transition in the convergence time on {a complete hypergraph} when the variance $sigma^2$ of the initial opinion distribution equals the confidence bound $c$. We prove that the convergence time grows at least exponentially fast with the number of nodes when $sigma^2 > c$ and the initial opinions are normally distributed. Therefore, to determine the convergence properties of our hypergraph BCM when the variance and the number of hyperedges are both large, it is necessary to use analytical methods instead of relying only on Monte Carlo simulations.



قيم البحث

اقرأ أيضاً

The problem of analyzing the performance of networked agents exchanging evidence in a dynamic network has recently grown in importance. This problem has relevance in signal and data fusion network applications and in studying opinion and consensus dy namics in social networks. Due to its capability of handling a wider variety of uncertainties and ambiguities associated with evidence, we use the framework of Dempster-Shafer (DS) theory to capture the opinion of an agent. We then examine the consensus among agents in dynamic networks in which an agent can utilize either a cautious or receptive updating strategy. In particular, we examine the case of bounded confidence updating where an agent exchanges its opinion only with neighboring nodes possessing similar evidence. In a fusion network, this captures the case in which nodes only update their state based on evidence consistent with the nodes own evidence. In opinion dynamics, this captures the notions of Social Judgment Theory (SJT) in which agents update their opinions only with other agents possessing opinions closer to their own. Focusing on the two special DS theoretic cases where an agent state is modeled as a Dirichlet body of evidence and a probability mass function (p.m.f.), we utilize results from matrix theory, graph theory, and networks to prove the existence of consensus agent states in several time-varying network cases of interest. For example, we show the existence of a consensus in which a subset of network nodes achieves a consensus that is adopted by follower network nodes. Of particular interest is the case of multiple opinion leaders, where we show that the agents do not reach a consensus in general, but rather converge to opinion clusters. Simulation results are provided to illustrate the main results.
The flow of information reaching us via the online media platforms is optimized not by the information content or relevance but by popularity and proximity to the target. This is typically performed in order to maximise platform usage. As a side effe ct, this introduces an algorithmic bias that is believed to enhance polarization of the societal debate. To study this phenomenon, we modify the well-known continuous opinion dynamics model of bounded confidence in order to account for the algorithmic bias and investigate its consequences. In the simplest version of the original model the pairs of discussion participants are chosen at random and their opinions get closer to each other if they are within a fixed tolerance level. We modify the selection rule of the discussion partners: there is an enhanced probability to choose individuals whose opinions are already close to each other, thus mimicking the behavior of online media which suggest interaction with similar peers. As a result we observe: a) an increased tendency towards polarization, which emerges also in conditions where the original model would predict convergence, and b) a dramatic slowing down of the speed at which the convergence at the asymptotic state is reached, which makes the system highly unstable. Polarization is augmented by a fragmented initial population.
In recent years, opinion dynamics has received an increasing attention, and various models have been introduced and evaluated mainly by simulation. In this study, we introduce and study a dynamical model inspired by the so-called `bounded confidence approach where voters engaged in an electoral decision with two options are influenced by individuals sharing an opinion similar to their own. This model allows one to capture salient features of the evolution of opinions and results in final clusters of voters. The model is nonlinear and discontinuous. We provide a detailed study of the model, including a complete classification of fixed points of the appearing dynamical system and analysis of their stability. It is shown that any trajectory tends to a fixed point. The model highlights that the final electoral outcome depends on the level of interaction in the society, besides the initial opinion of each individual, so that a strongly interconnected society can reverse the electoral outcome as compared to a society with looser exchange.
In social networks, interaction patterns typically change over time. We study opinion dynamics on tie-decay networks in which tie strength increases instantaneously when there is an interaction and decays exponentially between interactions. Specifica lly, we formulate continuous-time Laplacian dynamics and a discrete-time DeGroot model of opinion dynamics on these tie-decay networks, and we carry out numerical computations for the continuous-time Laplacian dynamics. We examine the speed of convergence by studying the spectral gaps of combinatorial Laplacian matrices of tie-decay networks. First, we compare the spectral gaps of the Laplacian matrices of tie-decay networks that we construct from empirical data with the spectral gaps for corresponding randomized and aggregate networks. We find that the spectral gaps for the empirical networks tend to be smaller than those for the randomized and aggregate networks. Second, we study the spectral gap as a function of the tie-decay rate and time. Intuitively, we expect small tie-decay rates to lead to fast convergence because the influence of each interaction between two nodes lasts longer for smaller decay rates. Moreover, as time progresses and more interactions occur, we expect eventual convergence. However, we demonstrate that the spectral gap need not decrease monotonically with respect to the decay rate or increase monotonically with respect to time. Our results highlight the importance of the interplay between the times that edges strengthen and decay in temporal networks.
242 - A.O. Sousa 2004
A Bounded Confidence (BC) model of socio-physics, in which the agents have continuous opinions and can influence each other only if the distance between their opinions is below a threshold, is simulated on a still growing scale-free network consideri ng several different strategies: for each new node (or vertex), that is added to the network all individuals of the network have their opinions updated following a BC model recipe. The results obtained are compared with the original model, with numerical simulations on different graph structures and also when it is considered on the usual fixed BA network. In particular, the comparison with the latter leads us to conclude that it does not matter much whether the network is still growing or is fixed during the opinion dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا