ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous Jets and Backflow Models for the Formation of W50/SS433 in Magnetohydrodynamics Simulations

88   0   0.0 ( 0 )
 نشر من قبل Takumi Ohmura
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The formation mechanism of the W50/SS433 complex has long been a mystery. We propose a new scenario in which the SS433 jets themselves form the W50/SS433 system. We carry out magnetohydrodynamics simulations of two-side jet propagation using the public code CANS+. As found in previous jet studies, when the propagating jet is lighter than the surrounding medium, the shocked plasma flows back from the jet tip to the core. We find that the morphology of light jets is spheroidal at early times, and afterward, the shell and wings are developed by the broadening spherical cocoon. The morphology strongly depends on the density ratio of the injected jet to the surrounding medium. Meanwhile, the ratio of the lengths of the two-side jets depends only on the density profile of the surrounding medium. We also find that most of the jet kinetic energy is dissipated at the oblique shock formed by the interaction between the backflow and beam flow, rather than at the jet terminal shock. The position of the oblique shock is spatially consistent with the X-ray and TeV gamma-ray hotspots of W50.

قيم البحث

اقرأ أيضاً

The microquasar SS433 features the most energetic jets known in our Galaxy. A large fraction of the jet kinetic power is delivered to the surrounding W50 nebula at the jet termination shock, from which high-energy emission and cosmic-ray production h ave been anticipated. Here we report on the detection of a persistent gamma-ray signal from the direction of SS433/W50 with the Fermi Large Area Telescope. The steady flux and a narrow spectral energy distribution with a maximum around 250 MeV suggest that gamma-rays are rendered by the bulk jet kinetic power through proton-proton collisions at the SS433/W50 interaction regions. If the same mechanism is operating in other baryon-loaded microquasar jets, their collective contribution may represent a significant fraction of the total galactic cosmic-ray flux at GeV energies.
We investigate the interplay between jets from Active Galactic Nuclei (AGNs) and the surrounding InterStellar Medium (ISM) through full 3D, high resolution, Adaptive Mesh Refinement simulations performed with the FLASH code. We follow the jet- ISM sy stem for several Myr in its transition from an early, compact source to an extended one including a large cocoon. During the jet evolution, we identify three major evolutionary stages and we find that, contrary to the prediction of popular theoretical models, none of the simulations shows a self-similar behavior. We also follow the evolution of the energy budget, and find that the fraction of input power deposited into the ISM (the AGN coupling constant) is of order of a few percent during the first few Myr. This is in broad agreement with galaxy formation models employing AGN feedback. However, we find that in these early stages, this energy is deposited only in a small fraction (< 1%) of the total ISM volume. Finally we demonstrate the relevance of backflows arising within the extended cocoon generated by a relativistic AGN jet within the ISM of its host galaxy, previously proposed as a mechanism for self-regulating the gas accretion onto the central object. These backflows tend later to be destabilized by the 3D dynamics, rather than by hydrodynamic (Kelvin- Helmholtz) instabilities. Yet, in the first few hundred thousand years, backflows may create a central accretion region of significant extent, and convey there as much as a few millions of solar masses.
The large jet kinetic power and non-thermal processes occurring in the microquasar SS 433 make this source a good candidate for a very high-energy (VHE) gamma-ray emitter. Gamma-ray fluxes have been predicted for both the central binary and the inter action regions between jets and surrounding nebula. Also, non-thermal emission at lower energies has been previously reported. We explore the capability of SS 433 to emit VHE gamma rays during periods in which the expected flux attenuation due to periodic eclipses and precession of the circumstellar disk periodically covering the central binary system is expected to be at its minimum. The eastern and western SS433/W50 interaction regions are also examined. We aim to constrain some theoretical models previously developed for this system. We made use of dedicated observations from MAGIC and H.E.S.S. from 2006 to 2011 which were combined for the first time and accounted for a total effective observation time of 16.5 h. Gamma-ray attenuation does not affect the jet/medium interaction regions. The analysis of a larger data set amounting to 40-80 h, depending on the region, was employed. No evidence of VHE gamma-ray emission was found. Upper limits were computed for the combined data set. We place constraints on the particle acceleration fraction at the inner jet regions and on the physics of the jet/medium interactions. Our findings suggest that the fraction of the jet kinetic power transferred to relativistic protons must be relatively small to explain the lack of TeV and neutrino emission from the central system. At the SS433/W50 interface, the presence of magnetic fields greater 10$mu$G is derived assuming a synchrotron origin for the observed X-ray emission. This also implies the presence of high-energy electrons with energies up to 50 TeV, preventing an efficient production of gamma-ray fluxes in these interaction regions.
SS433, located at the center of the supernova remnant W50, is a close proximity binary system consisting of a compact star and a normal star. Jets of material are directed outwards from the vicinity of the compact star symmetrically to the east and w est. Non-thermal hard X-ray emission is detected from lobes lying on both sides. Shock accelerated electrons are expected to generate sub-TeV gamma rays through the inverse-Compton process in the lobes. Observations of the western X-ray lobe region of SS433/W50 system have been performed to detect sub-TeV gamma-rays using the 10m CANGAROO-II telescope in August and September, 2001, and July and September, 2002. The total observation times are 85.2 hours for ON source, and 80.8 hours for OFF source data. No significant excess of sub-TeV gamma rays has been found at 3 regions of the western X-ray lobe of SS433/W50 system. We have derived 99% confidence level upper limits to the fluxes of gamma rays and have set constraints on the strengths of the magnetic fields assuming the synchrotron/inverse-Compton model for the wide energy range of photon spectrum from radio to TeV. The derived lower limits are 4.3 microgauss for the center of the brightest X-ray emission region and 6.3 microgauss for the far end from SS433 in the western X-ray lobe. In addition, we suggest that the spot-like X-ray emission may provide a major contribution to the hardest X-ray spectrum in the lobe.
We presents results from Smoothed Particle Magnetohydrodynamics simulations of collapsing molecular cloud cores, and dynamo amplification of the magnetic field in the presence of Mach 10 magnetised turbulence. Our star formation simulations have prod uced, for the first time ever, highly collimated magnetised protostellar jets from the first hydrostatic core phase. Up to 40% of the initial core mass may be ejected through this outflow. The primary difficulty in performing these simulations is maintaining the divergence free constraint of the magnetic field, and to address this issue, we have developed a new divergence cleaning method which has allowed us to stably follow the evolution of these protostellar jets for long periods. The simulations performed of supersonic MHD turbulence are able to exponentially amplify magnetic energy by up to 10 orders of magnitude via turbulent dynamo. To reduce numerical dissipation, a new shock detection algorithm is utilised which is able to track magnetic shocks throughout a large range of magnetic field strengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا