ﻻ يوجد ملخص باللغة العربية
Forcing systems though fast non-equilibrium phase transitions offers the opportunity to study new states of quantum matter that self-assemble in their wake. Here we study the quantum interference effects of correlated electrons confined in monolayer quantum nanostructures, created by femtosecond laser-induced quench through a first-order polytype structural transition in a layered transition-metal dichalcogenide material. Scanning tunnelling microscopy of the electrons confined within equilateral triangles, whose dimensions are a few crystal unit cells on the side, reveals that the trajectories are strongly modified from free-electron states both by electronic correlations and confinement. Comparison of experiments with theoretical predictions of strongly correlated electron behaviour reveals that the confining geometry destabilizes the Wigner/Mott crystal ground state, resulting in mixed itinerant and correlation-localized states intertwined on a length scale of 1 nm. Occasionally, itinerant-electron states appear to follow quantum interferences which are suggestive of classical trajectories (quantum scars). The work opens the path toward understanding the quantum transport of electrons confined in atomic-scale monolayer structures based on correlated-electron-materials.
Recent advances in tuning the correlated behavior of graphene and transition-metal dichalcogenides (TMDs) have opened a new frontier in the study of many-body physics in two dimensions and promise exciting possibilities for new quantum technologies.
Small-twist-angle transition metal dichalcogenide (TMD) heterobilayers develop isolated flat moire bands that are approximately described by triangular lattice generalized Hubbard models [PhysRevLett.121.026402]. In this article we explore the metall
Transition metal dichalcogenides (TMDs) are an exciting family of 2D materials; a member of this family, MoS$_2$, became the first measured monolayer semiconductor. In this article, a generalized phenomenological continuum model for the optical vibra
Strain engineering is a powerful technology which exploits stationary external or internal stress of specific spatial distribution for controlling the fundamental properties of condensed materials and nanostructures. This advanced technique modulates
The electron valley and spin degree of freedom in monolayer transition-metal dichalcogenides can be manipulated in optical and transport measurements performed in magnetic fields. The key parameter for determining the Zeeman splitting, namely the sep