ﻻ يوجد ملخص باللغة العربية
Quantum spin liquids (QSL) have generated considerable excitement as phases of matter with emergent gauge structures and fractionalized excitations. In this context, phase transitions out of QSLs have been widely discussed as Higgs transitions from deconfined to confined phases of a lattice gauge theory. However the possibility of a wider range of novel phases, occuring between these two limits, has yet to be systematically explored. In this Letter, we develop a formalism which allows for interactions between fractionalised quasiparticles coming from the constraint on the physical Hilbert space, and can be used to search for exotic, hidden phases. Taking pyrochlore spin ice as a starting point, we show how a U(1) QSL can give birth to abundant daughter phases, without need for fine--tuning of parameters. These include a (charged--) $mathbb{Z}_2$ QSL, and a supersolid. We discuss implications for experiment, and numerical results which support our analysis. These results are of broad relevance to QSL subject to a parton description, and offer a new perspective for searching exotic hidden phases in quantum magnets.
We use numerical linked cluster (NLC) expansions to compute the specific heat, C(T), and entropy, S(T), of a quantum spin ice model of Yb2Ti2O7 using anisotropic exchange interactions recently determined from inelastic neutron scattering measurements
The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Remarkably, the spin ices provide one of very few experiment
The Coulombic quantum spin liquid in quantum spin ice is an exotic quantum phase of matter that emerges on the pyrochlore lattice and is currently actively searched for. Motivated by recent experiments on the Yb-based breathing pyrochlore material Ba
Quantum spin ice materials, pyrochlore magnets with competing Ising and transverse exchange interactions, have been widely discussed as candidates for a quantum spin-liquid ground state. Here, motivated by quantum chemical calculations for Pr pyrochl
We demonstrate that the insulating one-band Hubbard model on the pyrochlore lattice contains, for realistic parameters, an extended quantum spin-liquid phase. This is a three-dimensional spin liquid formed from a highly degenerate manifold of dimer-b