ﻻ يوجد ملخص باللغة العربية
We report on an asymmetric high energy dual optical parametric amplifier (OPA) which is capable of having either the idlers, signals, or depleted pumps, relatively phase locked at commensurate or incommensurate wavelengths. Idlers and signals can be locked on the order of 200 mrad rms or better, corresponding to a 212 as jitter at $lambda$=2$mu$m. The high energy arm of the OPA outputs a combined 3.5 mJ of signal and idler, while the low energy arm outputs 1.5 mJ, with the entire system being pumped with a 1 kHz, 18 mJ Ti:Sapphire laser. Both arms are independently tunable from 1080 nm-2600 nm. The combination of relative phase locking, high output power and peak intensity, and large tunability makes our OPA an ideal tool for use in difference frequency generation (DFG) in the strong pump regime, and for high peak field waveform synthesis in the near-infrared. To demonstrate this ability we generate terahertz radiation through two color waveform synthesis in air plasma and show the influence of the relative phase on the generated terahertz intensity. The ability to phase lock multiple incommensurate wavelengths at high energies opens the door to a multitude of possibilities of strong pump DFG and waveform synthesis.
We present a Ho:YLF Chirped-Pulse Amplification (CPA) laser for pumping a longwave infrared Optical Parametric Chirped Pulse Amplifier (OPCPA) at a 1 kHz repetition rate. By utilizing a Ti:Sapphire laser as a frontend, 5-{mu}J seed pulses at 2051 nm
A high repetition rate, picosecond THz parametric amplifier (TPA) with a LiNbO3 (LN) crystal has been demonstrated in this work. At 10 kHz repetition rate, a peak power of 200 W and an average power of 12 {mu}W have been obtained over a wide range ar
The ability to amplify optical signals is of pivotal importance across science and technology. The development of optical amplifiers has revolutionized optical communications, which are today pervasively used in virtually all sensing and communicatio
We theoretically investigate the generation of two entangled beams of light in the process of single-pass type-I noncollinear frequency degenerate parametric downconversion with an ultrashort pulsed pump. We find the spatio-temporal squeezing eigenmo
Topological insulators possess protected boundary states which are robust against disorders and have immense implications in both fermionic and bosonic systems. Harnessing these topological effects in non-equilibrium scenarios is highly desirable and