ﻻ يوجد ملخص باللغة العربية
The colour bimodality of galaxies provides an empirical basis for theories of galaxy evolution. However, the balance of processes that begets this bimodality has not yet been constrained. A more detailed view of the galaxy population is needed, which we achieve in this paper by using unsupervised machine learning to combine multi-dimensional data at two different epochs. We aim to understand the cosmic evolution of galaxy subpopulations by uncovering substructures within the colour bimodality. We choose a clustering algorithm that models clusters using only the most discriminative data available, and apply it to two galaxy samples: one from the second edition of the GALEX-SDSS-WISE Legacy Catalogue (GSWLC-2; $z sim 0.06$), and the other from the VIMOS Public Extragalactic Redshift Survey (VIPERS; $z sim 0.65$). We cluster within a nine-dimensional feature space defined purely by rest-frame ultraviolet-through-near-infrared colours. Both samples are similarly partitioned into seven clusters, breaking down into four of mostly star-forming galaxies (including the vast majority of green valley galaxies) and three of mostly passive galaxies. The separation between these two families of clusters suggests differences in the evolution of their galaxies, and that these differences are strongly expressed in their colours alone. The samples are closely related, with star-forming/green-valley clusters at both epochs forming morphological sequences, capturing the gradual internally-driven growth of galaxy bulges. At high stellar masses, this growth is linked with quenching. However, it is only in our low-redshift sample that additional, environmental processes appear to be involved in the evolution of low-mass passive galaxies.
Various galaxy classification schemes have been developed so far to constrain the main physical processes regulating evolution of different galaxy types. In the era of a deluge of astrophysical information and recent progress in machine learning, a n
We explore unsupervised machine learning for galaxy morphology analyses using a combination of feature extraction with a vector-quantised variational autoencoder (VQ-VAE) and hierarchical clustering (HC). We propose a new methodology that includes: (
The early phases of galaxy formation constitute one of the most exciting frontiers in astrophysics. It is during this era that the first luminous sources reionize the intergalactic medium - the moment when structure formation affects every baryon in
Galaxy morphology is a fundamental quantity, that is essential not only for the full spectrum of galaxy-evolution studies, but also for a plethora of science in observational cosmology. While a rich literature exists on morphological-classification t
This chapter summarizes our current understanding of the stellar population properties of bulges and outlines important future research directions.