ترغب بنشر مسار تعليمي؟ اضغط هنا

Categorical computation

52   0   0.0 ( 0 )
 نشر من قبل Liang Kong
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In quantum computation, the computation is achieved by linear operators in Hilbert spaces. In this work, we explain an idea of a new computation scheme, in which the linear operators are replaced by (higher) functors between two (higher) categories. The fundamental problem in realizing this idea is the physical realization of (higher) functors. We provide a theoretical idea of realizing (higher) functors based on the physics of topological orders.



قيم البحث

اقرأ أيضاً

98 - Francisco Rios 2017
Quipper is a practical programming language for describing families of quantum circuits. In this paper, we formalize a small, but useful fragment of Quipper called Proto-Quipper-M. Unlike its parent Quipper, this language is type-safe and has a forma l denotational and operational semantics. Proto-Quipper-M is also more general than Quipper, in that it can describe families of morphisms in any symmetric monoidal category, of which quantum circuits are but one example. We design Proto-Quipper-M from the ground up, by first giving a general categorical model of parameters and state. The distinction between parameters and state is also known from hardware description languages. A parameter is a value that is known at circuit generation time, whereas a state is a value that is known at circuit execution time. After finding some interesting categorical structures in the model, we then define the programming language to fit the model. We cement the connection between the language and the model by proving type safety, soundness, and adequacy properties.
We study quasi-exact quantum error correcting codes and quantum computation with them. A quasi-exact code is an approximate code such that it contains a finite number of scaling parameters, the tuning of which can flow it to corresponding exact codes , serving as its fixed points. The computation with a quasi-exact code cannot realize any logical gate to arbitrary accuracy. To overcome this, the notion of quasi-exact universality is proposed, which makes quasi-exact quantum computation a feasible model especially for executing moderate-size algorithms. We find that the incompatibility between universality and transversality of the set of logical gates does not persist in the quasi-exact scenario. A class of covariant quasi-exact codes is defined which proves to support transversal and quasi-exact universal set of logical gates for $SU(d)$. This work opens the possibility of quantum computation with quasi-exact universality, transversality, and fault tolerance.
Topological quantum computation started as a niche area of research aimed at employing particles with exotic statistics, called anyons, for performing quantum computation. Soon it evolved to include a wide variety of disciplines. Advances in the unde rstanding of anyon properties inspired new quantum algorithms and helped in the characterisation of topological phases of matter and their experimental realisation. The conceptual appeal of topological systems as well as their promise for building fault-tolerant quantum technologies fuelled the fascination in this field. This `focus on brings together several of the latest developments in the field and facilitates the synergy between different approaches.
We consider the realization of universal quantum computation through braiding of Majorana fermions supplemented by unprotected preparation of noisy ancillae. It has been shown by Bravyi [Phys. Rev. A 73, 042313 (2006)] that under the assumption of pe rfect braiding operations, universal quantum computation is possible if the noise rate on a particular 4-fermion ancilla is below 40%. We show that beyond a noise rate of 89% on this ancilla the quantum computation can be efficiently simulated classically: we explicitly show that the noisy ancilla is a convex mixture of Gaussian fermionic states in this region, while for noise rates below 53% we prove that the state is not a mixture of Gaussian states. These results were obtained by generalizing concepts in entanglement theory to the setting of Gaussian states and their convex mixtures. In particular we develop a complete set of criteria, namely the existence of a Gaussian-symmetric extension, which determine whether a state is a convex mixture of Gaussian states.
Certain physical systems that one might consider for fault-tolerant quantum computing where qubits do not readily interact, for instance photons, are better suited for measurement-based quantum-computational protocols. Here we propose a measurement-b ased model for universal quantum computation that simulates the braiding and fusion of Majorana modes. To derive our model we develop a general framework that maps any scheme of fault-tolerant quantum computation with stabilizer codes into the measurement-based picture. As such, our framework gives an explicit way of producing fault-tolerant models of universal quantum computation with linear optics using protocols developed using the stabilizer formalism. Given the remarkable fault-tolerant properties that Majorana modes promise, the main example we present offers a robust and resource efficient proposal for photonic quantum computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا