ترغب بنشر مسار تعليمي؟ اضغط هنا

ATLASGAL -- selected massive clumps in the inner Galaxy. IX. Deuteration of ammonia

160   0   0.0 ( 0 )
 نشر من قبل Marion Wienen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Deuteration has been used as a tracer of the evolutionary phases of low- and high-mass star formation. The APEX Telescope Large Area Survey (ATLASGAL) provides an important repository for a detailed statistical study of massive star-forming clumps in the inner Galactic disc at different evolutionary phases. We study the amount of deuteration using NH2D in a representative sample of high-mass clumps discovered by the ATLASGAL survey covering various evolutionary phases of massive star formation. Unbiased spectral line surveys at 3 mm were thus conducted towards ATLASGAL clumps between 85 and 93 GHz with the Mopra telescope and from 84 to 115 GHz using the IRAM 30m telescope. A subsample was followed up in the NH2D transition at 74 GHz with the IRAM 30m telescope. We determined the deuterium fractionation from the column density ratio of NH2D and NH3 and measured the NH2D excitation temperature for the first time from the simultaneous modelling of the 74 and 110 GHz line using MCWeeds. We find a large range of the NH2D to NH3 column density ratio up to 1.6+/-0.7 indicating a high degree of NH3 deuteration in a subsample of the clumps. Our analysis yields a clear difference between NH3 and NH2D rotational temperatures for a fraction of the sources. We therefore advocate observation of the NH2D transitions at 74 and 110 GHz simultaneously to determine the NH2D temperature directly. We determine a median ortho-to-para column density ratio of 3.7+/-1.2. The high detection rate of NH2D confirms a high deuteration previously found in massive star-forming clumps. Using the excitation temperature of NH2D instead of NH3 is needed to avoid an overestimation of deuteration. We measure a higher detection rate of NH2D in sources at early evolutionary stages. The deuterium fractionation shows no correlation with evolutionary tracers such as the NH3 (1,1) line width, or rotational temperature.



قيم البحث

اقرأ أيضاً

We aim to directly determine the kinetic temperature and spatial density with formaldehyde for the $sim$100 brightest ATLASGAL-selected clumps at 870 $mu$m representing various evolutionary stages of high-mass star formation. Ten transitions ($J$ = 3 -2 and 4-3) of ortho- and para-H$_2$CO near 211, 218, 225, and 291 GHz were observed with the APEX 12 m telescope. Using non-LTE models with RADEX, we derive the gas kinetic temperature and spatial density using the measured p-H$_2$CO 3$_{21}$-2$_{20}$/3$_{03}$-2$_{02}$, 4$_{22}$-3$_{21}$/4$_{04}$-3$_{03}$, and 4$_{04}$-3$_{03}$/3$_{03}$-2$_{02}$ ratios. The gas kinetic temperatures derived from the p-H$_2$CO 3$_{21}$-2$_{20}$/3$_{03}$-2$_{02}$ and 4$_{22}$-3$_{21}$/4$_{04}$-3$_{03}$ line ratios are high, ranging from 43 to $>$300 K with an unweighted average of 91 $pm$ 4 K. Deduced $T_{rm kin}$ values from the $J$ = 3-2 and 4-3 transitions are similar. Spatial densities of the gas derived from the p-H$_2$CO 4$_{04}$-3$_{03}$/3$_{03}$-2$_{02}$ line ratios yield 0.6-8.3 $times$ 10$^6$ cm$^{-3}$ with an unweighted average of 1.5 ($pm$0.1) $times$ 10$^6$ cm$^{-3}$. A comparison of kinetic temperatures derived from p-H$_2$CO, NH$_3$, and the dust emission indicates that p-H$_2$CO traces a distinctly higher temperature than the NH$_3$ (2,2)/(1,1) transitions and the dust, tracing heated gas more directly associated with the star formation process. The H$_2$CO linewidths are found to be correlated with bolometric luminosity and increase with the evolutionary stage of the clumps, which suggests that higher luminosities tend to be associated with a more turbulent molecular medium. It seems that the spatial densities measured with H$_2$CO do not vary significantly with the evolutionary stage of the clumps. However, averaged gas kinetic temperatures derived from H$_2$CO increase with time through the evolution of the clumps.
The processes leading to the birth of high-mass stars are poorly understood. We characterise here a sample of 430 massive clumps from the ATLASGAL survey, which are representative of different evolutionary stages. To establish a census of molecular t racers of their evolution we performed an unbiased spectral line survey covering the 3-mm atmospheric window between 84-117 GHz with the IRAM 30m. A smaller sample of 128 clumps has been observed in the SiO (5-4) transition with the APEX telescope to complement the SiO (2-1) line and probe the excitation conditions of the emitting gas, which is the main focus of the current study. We report a high detection rate of >75% of the SiO (2-1) line and a >90% detection rate from the dedicated follow-ups in the (5-4) transition. The SiO (2-1) line with broad line profiles and high detection rates, is a powerful probe of star formation activity, while the ubiquitous detection of SiO in all evolutionary stages suggests a continuous star formation process in massive clumps. We find a large fraction of infrared-quiet clumps to exhibit SiO emission, the majority of them only showing a low-velocity component (FWHM~5-6 km/s) centred at the rest velocity of the clump. In the current picture, where this is attributed to low-velocity shocks from cloud-cloud collisions, this can be used to pinpoint the youngest, thus, likely prestellar massive structures. Based on the line ratio of the (5-4) to the (2-1) line, our study reveals a trend of changing excitation conditions that lead to brighter emission in the (5-4) line towards more evolved sources. Our analysis delivers a more robust estimate of SiO column density and abundance than previous studies and questions the decrease of jet activity in massive clumps as a function of age.
(Abridged) Aims: We aim to use the progressive heating of the gas caused by the feedback of high-mass young stellar objects (YSOs) to prove the statistical validity of the most common schemes used to define an evolutionary sequence for high-mass clum ps, and characterise the sensitivity of different tracers to this process. Methods: From the spectroscopic follow-ups of the ATLASGAL TOP100 sample, we selected several multiplets of CH3CN, CH3CCH, and CH3OH emission lines to derive and compare the physical properties of the gas in the clumps along the evolutionary sequence. Our findings are compared with results obtained from CO isotopologues, dust, and NH3 from previous studies on the same sample. Results: The chemical properties of each species have a major role on the measured physical properties. Low temperatures are traced by NH3, CH3OH, and CO (in the early phases), the warm and dense envelope can be probed with CH3CN, CH3CCH, and, in evolved sources via CO isotopologues. CH3OH and CH3CN are also abundant in the hot cores, and their high-excitation transitions may be good tools to study the kinematics in the hot gas surrounding the YSOs that these clumps are hosting. All tracers show, to different degrees, progressive warming with evolution. The relation between gas temperature and L/M is reproduced by a toy model of a spherical, internally heated clump. Conclusions: The evolutionary sequence defined for the clumps is statistically valid and we could identify the processes dominating in different intervals of L/M. For L/M<2Lsun/Msun a large quantity of gas is still being accumulated and compressed at the bottom of the potential well. Between 2Lsun/Msun<L/M<40Lsun/Msun the YSOs gain mass and increase in L; the first hot cores appear around L/M=10Lsun/Msun. Finally, for L/M>40Lsun/Msun HII regions become common, showing that dissipation of the parental clump dominates.
High-mass stars are formed within massive molecular clumps, where a large number of stars form close together. The evolution of the clumps with different masses and luminosities is mainly regulated by its high-mass stellar content and the formation o f such objects is still not well understood. In this work, we characterise the mid-J CO emission in a statistical sample of 99 clumps (Top100) selected from the ATLASGAL survey that are representative of the Galactic proto-cluster population. High-spatial resolution APEX-CHAMP+ maps of the CO(6-5) and CO(7-6) transitions were obtained and combined with additional single-pointing APEX-FLASH+ spectra of the CO(4-3) line. We study the correlations of the CO line luminosities and profiles for the three CO transitions with the clump properties and investigate if and how they change as a function of the evolution. All sources were detected above 3-$sigma$ in all three CO transitions and most of the sources exhibit broad CO emission likely associated with molecular outflows. We found that the extension of the mid-J CO emission is correlated with the size of the dust emission traced by the Herschel-PACS 70 $mu$m maps. The CO line luminosity is correlated with the luminosity and mass of the clumps. However, it does not correlate with the L/M ratio. The dependency of the CO luminosity with the properties of the clumps is steeper for higher-J transitions. Our data seem to exclude that this trend is biased by self-absorption features in the CO emission, but rather suggest that different J transitions arise from different regions of the inner envelope. Moreover, high-mass clumps show similar trends in CO luminosity as lower mass clumps, but are systematically offset towards larger values, suggesting that higher column density and/or temperature (of unresolved) CO emitters are found inside high-mass clumps.
The ATLASGAL survey provides an ideal basis for detailed studies of large numbers of massive star forming clumps covering the whole range of evolutionary stages. The ATLASGAL Top100 is a sample of clumps selected from their infrared and radio propert ies to be representative for the whole range of evolutionary stages. The ATLASGAL Top100 sources are the focus of a number of detailed follow-up studies that will be presented in a series of papers. In the present work we use the dust continuum emission to constrain the physical properties of this sample and identify trends as a function of source evolution. We determine flux densities from mid-infrared to submm wavelength (8-870 micron) images and use these values to fit their spectral energy distributions (SEDs) and determine their dust temperature and flux. Combining these with recent distances from the literature including maser parallax measurements we determine clump masses, luminosities and column densities. We find trends for increasing temperature, luminosity and column density with the proposed evolution sequence, confirming that this sample is representative of different evolutionary stages of massive star formation. We show that most of the sample has the ability to form massive stars (including the most massive O-type stars) and that the majority is gravitationally unstable and hence likely to be collapsing. The highest column density ATLASGAL sources presented cover the whole range of evolutionary stages from the youngest to the most evolved high-mass star forming clumps. Their study provides a unique starting point for more in-depth research on massive star formation in four distinct evolutionary stages whose well defined physical parameters afford more detailed studies. As most of the sample is closer than 5 kpc, these sources are also ideal for follow-up observations with high spatial resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا