ﻻ يوجد ملخص باللغة العربية
Redundant storage maintains the performance of distributed systems under various forms of uncertainty. This paper considers the uncertainty in node access and download service. We consider two access models under two download service models. In one access model, a user can access each node with a fixed probability, and in the other, a user can access a random fixed-size subset of nodes. We consider two download service models. In the first (small file) model, the randomness associated with the file size is negligible. In the second (large file) model, randomness is associated with both the file size and the systems operations. We focus on the service rate of the system. For a fixed redundancy level, the systems service rate is determined by the allocation of coded chunks over the storage nodes. We consider quasi-uniform allocations, where coded content is uniformly spread among a subset of nodes. The question we address asks what the size of this subset (spreading) should be. We show that in the small file model, concentrating the coded content to a minimum-size subset is universally optimal. For the large file model, the optimal spreading depends on the system parameters. These conclusions hold for both access models.
Recently, the research on local repair codes is mainly confined to repair the failed nodes within each repair group. But if the extreme cases occur that the entire repair group has failed, the local code stored in the failed group need to be recovere
A central issue of distributed computing systems is how to optimally allocate computing and storage resources and design data shuffling strategies such that the total execution time for computing and data shuffling is minimized. This is extremely cri
We propose a novel application of coded computing to the problem of the nearest neighbor estimation using MatDot Codes [Fahim. et.al. 2017], that are known to be optimal for matrix multiplication in terms of recovery threshold under storage constrain
A major concern in cloud/edge storage systems is serving a large number of users simultaneously. The service rate region is introduced recently as an important performance metric for coded distributed systems, which is defined as the set of all data
This paper studies the problem of repairing secret sharing schemes, i.e., schemes that encode a message into $n$ shares, assigned to $n$ nodes, so that any $n-r$ nodes can decode the message but any colluding $z$ nodes cannot infer any information ab