ﻻ يوجد ملخص باللغة العربية
We investigate the time-dependent perturbations of strongly coupled $mathcal{N} = 4$ SYM theory at finite temperature and finite chemical potential with a second order phase transition. This theory is modelled by a top-down Einstein-Maxwell-dilaton description which is a consistent truncation of the dimensional reduction of type IIB string theory on AdS$_5times$S$^5$. We focus on spin-1 and spin-2 sectors of perturbations and compute the linearized hydrodynamic transport coefficients up to the third order in gradient expansion. We also determine the radius of convergence of the hydrodynamic mode in spin-1 sector and the lowest non-hydrodynamic modes in spin-2 sector. Analytically, we find that all the hydrodynamic quantities have the same critical exponent near the critical point $theta = 1/2$. Moreover, we establish a relation between symmetry enhancement of the underlying theory and vanishing the only third order hydrodynamic transport coefficient $theta_1$, which appears in the shear dispersion relation of a conformal theory on a flat background.
We analyze the combined effects of hydrodynamic fluctuations and chiral magnetic effect (CME) for a chiral medium in the presence of a background magnetic field. Based on the recently developed non-equilibrium effective field theory, we show fluctuat
Monopole bubbling effect is screening of magnetic charges of singular Dirac monopoles by regular t Hooft-Polyakov monopoles. We study properties of weak coupling perturbative series in the presence of monopole bubbling effects as well as instantons.
We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in $4-epsilon$ dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order $mathca
We employ hydrodynamics and gauge/gravity to study magneto-transport in phases of matter where translations are broken (pseudo-)spontaneously. First we provide a hydrodynamic description of systems where translations are broken homogeneously at nonze
Many BPS partition functions depend on a choice of additional structure: fluxes, Spin or Spin$^c$ structures, etc. In a context where the BPS generating series depends on a choice of Spin$^c$ structure we show how different limits with respect to the