ﻻ يوجد ملخص باللغة العربية
Following up on a proposal to use four-wave mixing in an underdense plasma at mildly relativistic laser intensities to produce vastly more energetic x-ray pulses [V. M. Malkin and N. J. Fisch, Phys. Rev. E, 101, 023211 (2020)], we perform the first numerical simulations in one dimension to demonstrate amplification of a short high frequency seed through four-wave mixing. We find that parasitic processes including phase modulation and spatial pulse slippage limit the amplification efficiency. We numerically explore the previously proposed dual seed configuration as a countermeasure against phase modulation. We show how this approach tends to be thwarted by longitudinal slippage. In the examples we considered, the best performance was in fact achieved through optimization of signal and pump parameters in a single seed configuration.
Frequency upconversion of an electromagnetic wave can occur in ionized plasma with decreasing electric permittivity and in split-ring resonator-structure metamaterials with decreasing magnetic permeability. We develop a general theory to describe the
A kinetic formalism of parametric decay of a large amplitude lower hybrid pump wave into runaway electron mode and a uppersideband mode is investigated. The pump and the sideband exert a ponderomotive force on runaway electrons, driving the runaway m
Exact four-photon resonance of collinear planar laser pulses is known to be prohibited by the classical dispersion law of electromagnetic waves in plasma. We show here that the renormalization produced by an arbitrarily small relativistic electron no
Efficient frequency conversion of photons has important applications in optical quantum technology because the frequency range suitable for photon manipulation and communication usually varies widely. Recently, an efficient frequency conversion syste
Laser frequency can be upconverted in a plasma undergoing ionization. For finite ionization rates, the laser pulse energy is partitioned into a pair of counter-propagating waves and static transverse currents. The wave amplitudes are determined by th