ترغب بنشر مسار تعليمي؟ اضغط هنا

Fractionally Log-Concave and Sector-Stable Polynomials: Counting Planar Matchings and More

104   0   0.0 ( 0 )
 نشر من قبل Nima Anari
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We show fully polynomial time randomized approximation schemes (FPRAS) for counting matchings of a given size, or more generally sampling/counting monomer-dimer systems in planar, not-necessarily-bipartite, graphs. While perfect matchings on planar graphs can be counted exactly in polynomial time, counting non-perfect matchings was shown by [Jer87] to be #P-hard, who also raised the question of whether efficient approximate counting is possible. We answer this affirmatively by showing that the multi-site Glauber dynamics on the set of monomers in a monomer-dimer system always mixes rapidly, and that this dynamics can be implemented efficiently on downward-closed families of graphs where counting perfect matchings is tractable. As further applications of our results, we show how to sample efficiently using multi-site Glauber dynamics from partition-constrained strongly Rayleigh distributions, and nonsymmetric determinantal point processes. In order to analyze mixing properties of the multi-site Glauber dynamics, we establish two notions for generating polynomials of discrete set-valued distributions: sector-stability and fractional log-concavity. These notions generalize well-studied properties like real-stability and log-concavity, but unlike them robustly degrade under useful transformations applied to the distribution. We relate these notions to pairwise correlations in the underlying distribution and the notion of spectral independence introduced by [ALO20], providing a new tool for establishing spectral independence based on geometry of polynomials. As a byproduct of our techniques, we show that polynomials avoiding roots in a sector of the complex plane must satisfy what we call fractional log-concavity; this extends a classic result established by [Gar59] who showed homogeneous polynomials that have no roots in a half-plane must be log-concave over the positive orthant.



قيم البحث

اقرأ أيضاً

We introduce a notion called entropic independence for distributions $mu$ defined on pure simplicial complexes, i.e., subsets of size $k$ of a ground set of elements. Informally, we call a background measure $mu$ entropically independent if for any ( possibly randomly chosen) set $S$, the relative entropy of an element of $S$ drawn uniformly at random carries at most $O(1/k)$ fraction of the relative entropy of $S$, a constant multiple of its ``share of entropy. Entropic independence is the natural analog of spectral independence, another recently established notion, if one replaces variance by entropy. In our main result, we show that $mu$ is entropically independent exactly when a transformed version of the generating polynomial of $mu$ can be upper bounded by its linear tangent, a property implied by concavity of the said transformation. We further show that this concavity is equivalent to spectral independence under arbitrary external fields, an assumption that also goes by the name of fractional log-concavity. Our result can be seen as a new tool to establish entropy contraction from the much simpler variance contraction inequalities. A key differentiating feature of our result is that we make no assumptions on marginals of $mu$ or the degrees of the underlying graphical model when $mu$ is based on one. We leverage our results to derive tight modified log-Sobolev inequalities for multi-step down-up walks on fractionally log-concave distributions. As our main application, we establish the tight mixing time of $O(nlog n)$ for Glauber dynamics on Ising models with interaction matrix of operator norm smaller than $1$, improving upon the prior quadratic dependence on $n$.
We give an FPTAS for computing the number of matchings of size $k$ in a graph $G$ of maximum degree $Delta$ on $n$ vertices, for all $k le (1-delta)m^*(G)$, where $delta>0$ is fixed and $m^*(G)$ is the matching number of $G$, and an FPTAS for the num ber of independent sets of size $k le (1-delta) alpha_c(Delta) n$, where $alpha_c(Delta)$ is the NP-hardness threshold for this problem. We also provide quasi-linear time randomized algorithms to approximately sample from the uniform distribution on matchings of size $k leq (1-delta)m^*(G)$ and independent sets of size $k leq (1-delta)alpha_c(Delta)n$. Our results are based on a new framework for exploiting local central limit theorems as an algorithmic tool. We use a combination of Fourier inversion, probabilistic estimates, and the deterministic approximation of partition functions at complex activities to extract approximations of the coefficients of the partition function. For our results for independent sets, we prove a new local central limit theorem for the hard-core model that applies to all fugacities below $lambda_c(Delta)$, the uniqueness threshold on the infinite $Delta$-regular tree.
We examine the problem of exactly or approximately counting all perfect matchings in hereditary classes of nonbipartite graphs. In particular, we consider the switch Markov chain of Diaconis, Graham and Holmes. We determine the largest hereditary cla ss for which the chain is ergodic, and define a large new hereditary class of graphs for which it is rapidly mixing. We go on to show that the chain has exponential mixing time for a slightly larger class. We also examine the question of ergodicity of the switch chain in a arbitrary graph. Finally, we give exact counting algorithms for three classes.
We show that the ratio of matched individuals to blocking pairs grows linearly with the number of propose--accept rounds executed by the Gale--Shapley algorithm for the stable marriage problem. Consequently, the participants can arrive at an almost s table matching even without full information about the problem instance; for each participant, knowing only its local neighbourhood is enough. In distributed-systems parlance, this means that if each person has only a constant number of acceptable partners, an almost stable matching emerges after a constant number of synchronous communication rounds. This holds even if ties are present in the preference lists. We apply our results to give a distributed $(2+epsilon)$-approximation algorithm for maximum-weight matching in bicoloured graphs and a centralised randomised constant-time approximation scheme for estimating the size of a stable matching.
We study the problem of allocating $m$ items to $n$ agents subject to maximizing the Nash social welfare (NSW) objective. We write a novel convex programming relaxation for this problem, and we show that a simple randomized rounding algorithm gives a $1/e$ approximation factor of the objective. Our main technical contribution is an extension of Gurvitss lower bound on the coefficient of the square-free monomial of a degree $m$-homogeneous stable polynomial on $m$ variables to all homogeneous polynomials. We use this extension to analyze the expected welfare of the allocation returned by our randomized rounding algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا