ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Temperature-to-Polarization Leakage in BICEP3 and Keck CMB Data from 2016 to 2018

326   0   0.0 ( 0 )
 نشر من قبل Tyler St Germaine
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The BICEP/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial $B$-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T $rightarrow$ P) leakage in our latest data including observations from 2016 through 2018. This includes three years of BICEP3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of beam map simulations, which use these beam maps to observe a simulated temperature (no $Q/U$) sky to estimate T $rightarrow$ P leakage in our real data.

قيم البحث

اقرأ أيضاً

The BICEP/Keck experiment (BK) is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background (CMB) polarization from the South Pole in search of a primordial $B$-mode signature. This $B$-mode signal arises fro m primordial gravitational waves interacting with the CMB, and has amplitude parametrized by the tensor-to-scalar ratio $r$. Since 2016, BICEP3 and the Keck Array have been observing with 4800 total antenna-coupled transition-edge sensor detectors, with frequency bands spanning 95, 150, 220, and 270 GHz. Here we present the optical performance of these receivers from 2016 to 2019, including far-field beams measured in situ with an improved chopped thermal source and instrument spectral response measured with a field-deployable Fourier Transform Spectrometer. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We generate per-detector far-field beam maps and the corresponding differential beam mismatch that is used to estimate the temperature-to-polarization leakage in our CMB maps and to give feedback on detector and optics fabrication. The differential beam parameters presented here were estimated using improved low-level beam map analysis techniques, including efficient removal of non-Gaussian noise as well as improved spatial masking. These techniques help minimize systematic uncertainty in the beam analysis, with the goal of constraining the bias on $r$ induced by temperature-to-polarization leakage to be subdominant to the statistical uncertainty. This is essential as we progress to higher detector counts in the next generation of CMB experiments.
Precision measurements of cosmic microwave background (CMB) polarization require extreme control of instrumental systematics. In a companion paper we have presented cosmological constraints from observations with the BICEP2 and Keck Array experiments up to and including the 2015 observing season (BK15), resulting in the deepest CMB polarization maps to date and a statistical sensitivity to the tensor-to-scalar ratio of $sigma(r) = 0.020$. In this work we characterize the beams and constrain potential systematic contamination from main beam shape mismatch at the three BK15 frequencies (95, 150, and 220 GHz). Far-field maps of 7,360 distinct beam patterns taken from 2010-2015 are used to measure differential beam parameters and predict the contribution of temperature-to-polarization leakage to the BK15 B-mode maps. In the multifrequency, multicomponent likelihood analysis that uses BK15, Planck, and WMAP maps to separate sky components, we find that adding this predicted leakage to simulations induces a bias of $Delta r = 0.0027 pm 0.0019$. Future results using higher-quality beam maps and improved techniques to detect such leakage in CMB data will substantially reduce this uncertainty, enabling the levels of systematics control needed for BICEP Array and other experiments that plan to definitively probe large-field inflation.
We present measurements of the $E$-mode ($EE$) polarization power spectrum and temperature-$E$-mode ($TE$) cross-power spectrum of the cosmic microwave background using data collected by SPT-3G, the latest instrument installed on the South Pole Teles cope. This analysis uses observations of a 1500 deg$^2$ region at 95, 150, and 220 GHz taken over a four month period in 2018. We report binned values of the $EE$ and $TE$ power spectra over the angular multipole range $300 le ell < 3000$, using the multifrequency data to construct six semi-independent estimates of each power spectrum and their minimum-variance combination. These measurements improve upon the previous results of SPTpol across the multipole ranges $300 le ell le 1400$ for $EE$ and $300 le ell le 1700$ for $TE$, resulting in constraints on cosmological parameters comparable to those from other current leading ground-based experiments. We find that the SPT-3G dataset is well-fit by a $Lambda$CDM cosmological model with parameter constraints consistent with those from Planck and SPTpol data. From SPT-3G data alone, we find $H_0 = 68.8 pm 1.5 mathrm{km,s^{-1},Mpc^{-1}}$ and $sigma_8 = 0.789 pm 0.016$, with a gravitational lensing amplitude consistent with the $Lambda$CDM prediction ($A_L = 0.98 pm 0.12$). We combine the SPT-3G and the Planck datasets and obtain joint constraints on the $Lambda$CDM model. The volume of the 68% confidence region in six-dimensional $Lambda$CDM parameter space is reduced by a factor of 1.5 compared to Planck-only constraints, with only slight shifts in central values. We note that the results presented here are obtained from data collected during just half of a typical observing season with only part of the focal plane operable, and that the active detector count has since nearly doubled for observations made with SPT-3G after 2018.
BICEP1 is a millimeter-wavelength telescope designed specifically to measure the inflationary B-mode polarization of the Cosmic Microwave Background (CMB) at degree angular scales. We present results from an analysis of the data acquired during three seasons of observations at the South Pole (2006 to 2008). This work extends the two-year result published in Chiang et al. (2010), with additional data from the third season and relaxed detector-selection criteria. This analysis also introduces a more comprehensive estimation of band-power window functions, improved likelihood estimation methods and a new technique for deprojecting monopole temperature-to-polarization leakage which reduces this class of systematic uncertainty to a negligible level. We present maps of temperature, E- and B-mode polarization, and their associated angular power spectra. The improvement in the map noise level and polarization spectra error bars are consistent with the 52% increase in integration time relative to Chiang et al. (2010). We confirm both self-consistency of the polarization data and consistency with the two-year results. We measure the angular power spectra at 21 <= l <= 335 and find that the EE spectrum is consistent with Lambda Cold Dark Matter (LCDM) cosmology, with the first acoustic peak of the EE spectrum now detected at 15sigma. The BB spectrum remains consistent with zero. From B-modes only, we constrain the tensor-to-scalar ratio to r = 0.03+0.27-0.23, or r < 0.70 at 95% confidence level.
We monitored BL Lacertae in the B, V, R and I bands for 14 nights during the period of 2016-2018. The source showed significant intraday variability on 12 nights. We performed colour-magnitude analysis and found that the source exhibited bluer-when-b righter chromatism. This bluer-when-brighter behavior is at least partly caused by the larger variation amplitude at shorter wavelength. The variations at different wavelengths are well correlated and show no inter-band time lag.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا