ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the dynamical phase diagram of the Dicke model via classical and quantum probes

75   0   0.0 ( 0 )
 نشر من قبل Robert Lewis-Swan Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically study the dynamical phase diagram of the Dicke model in both classical and quantum limits using large, experimentally relevant system sizes. Our analysis elucidates that the model features dynamical critical points that are distinct from previously investigated excited-state equilibrium transitions. Moreover, our numerical calculations demonstrate that mean-field features of the dynamics remain valid in the exact quantum dynamics, but we also find that in regimes where quantum effects dominate signatures of the dynamical phases and chaos can persist in purely quantum metrics such as entanglement and correlations. Our predictions can be verified in current quantum simulators of the Dicke model including arrays of trapped ions.



قيم البحث

اقرأ أيضاً

254 - G. Konya , D. Nagy , G. Szirmai 2012
Laser-driven Bose-Einstein condensate of ultracold atoms loaded into a lossy high-finesse optical resonator exhibits critical behavior and, in the thermodynamic limit, a phase transition between stationary states of different symmetries. The system r ealizes an open-system variant of the celebrated Dicke-model. We study the transition for a finite number of atoms by means of a Hartree-Fock-Bogoliubov method adapted to a damped-driven open system. The finite-size scaling exponents are determined and a clear distinction between the non-equilibrium and the equilibrium quantum criticality is found.
157 - D. Nagy , G. Szirmai , P. Domokos 2011
The quantum phase transition of the Dicke-model has been observed recently in a system formed by motional excitations of a laser-driven Bose--Einstein condensate coupled to an optical cavity [1]. The cavity-based system is intrinsically open: photons can leak out of the cavity where they are detected. Even at zero temperature, the continuous weak measurement of the photon number leads to an irreversible dynamics towards a steady-state which exhibits a dynamical quantum phase transition. However, whereas the critical point and the mean field is only slightly modified with respect to the phase transition in the ground state, the entanglement and the critical exponents of the singular quantum correlations are significantly different in the two cases.
272 - D. Nagy , G. Konya , G. Szirmai 2009
We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke-model. The quantum phase transition of the Dicke-model from the normal to the superradiant phase corresponds to the self -organization of atoms from the homogeneous into a periodically patterned distribution above a critical driving strength. The fragility of the ground state due to photon measurement induced back action is calculated.
We consider an important generalization of the Dicke model in which multi-level atoms, instead of two-level atoms as in conventional Dicke model, interact with a single photonic mode. We explore the phase diagram of a broad class of atom-photon coupl ing schemes and show that, under this generalization, the Dicke model can become multicritical. For a subclass of experimentally realizable schemes, multicritical conditions of arbitrary order can be expressed analytically in compact forms. We also calculate the atom-photon entanglement entropy for both critical and non-critical cases. We find that the order of the criticality strongly affects the critical entanglement entropy: higher order yields stronger entanglement. Our work provides deep insight into quantum phase transitions and multicriticality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا