ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the topological Anderson transition with quantum walks

59   0   0.0 ( 0 )
 نشر من قبل Dmitry A. Bagrets
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider one-dimensional quantum walks in optical linear networks with synthetically introduced disorder and tunable system parameters allowing for the engineered realization of distinct topological phases. The option to directly monitor the walkers probability distribution makes this optical platform ideally suited for the experimental observation of the unique signatures of the one-dimensional topological Anderson transition. We analytically calculate the probability distribution describing the quantum critical walk in terms of a (time staggered) spin polarization signal and propose a concrete experimental protocol for its measurement. Numerical simulations back the realizability of our blueprint with current date experimental hardware.



قيم البحث

اقرأ أيضاً

The symmetries associated with discrete-time quantum walks (DTQWs) and the flexibilities in controlling their dynamical parameters allow to create a large number of topological phases. An interface in position space, which separates two regions with different topological numbers, can, for example, be effectively modelled using different coin parameters for the walk on either side of the interface. Depending on the neighbouring numbers, this can lead to localized states in one-dimensional configurations and here we carry out a detailed study into the strength of such localized states. We show that it can be related to the amount of entanglement created by the walks, with minima appearing for strong localizations. This feature also persists in the presence of small amounts of $sigma_x$ (bit flip) noise.
Chains of superconducting circuit devices provide a natural platform for studies of synthetic bosonic quantum matter. Motivated by the recent experimental progress in realizing disordered and interacting chains of superconducting transmon devices, we study the bosonic many-body localization phase transition using the methods of exact diagonalization as well as matrix product state dynamics. We estimate the location of transition separating the ergodic and the many-body localized phases as a function of the disorder strength and the many-body on-site interaction strength. The main difference between the bosonic model realized by superconducting circuits and similar fermionic model is that the effect of the on-site interaction is stronger due to the possibility of multiple excitations occupying the same site. The phase transition is found to be robust upon including longer-range hopping and interaction terms present in the experiments. Furthermore, we calculate experimentally relevant local observables and show that their temporal fluctuations can be used to distinguish between the dynamics of Anderson insulator, many-body localization, and delocalized phases. While we consider unitary dynamics, neglecting the effects of dissipation, decoherence and measurement back action, the timescales on which the dynamics is unitary are sufficient for observation of characteristic dynamics in the many-body localized phase. Moreover, the experimentally available disorder strength and interactions allow for tuning the many-body localization phase transition, thus making the arrays of superconducting circuit devices a promising platform for exploring localization physics and phase transition.
We present a large N solution of a microscopic model describing the Mott-Anderson transition on a finite-coordination Bethe lattice. Our results demonstrate that strong spatial fluctuations, due to Anderson localization effects, dramatically modify t he quantum critical behavior near disordered Mott transitions. The leading critical behavior of quasiparticle wavefunctions is shown to assume a universal form in the full range from weak to strong disorder, in contrast to disorder-driven non-Fermi liquid (electronic Griffiths phase) behavior, which is found only in the strongly correlated regime.
A continuous-time quantum walk is investigated on complex networks with the characteristic property of community structure, which is shared by most real-world networks. Motivated by the prospect of viable quantum networks, I focus on the effects of n etwork instabilities in the form of broken links, and examine the response of the quantum walk to such failures. It is shown that the reconfiguration of the quantum walk is determined by the community structure of the network. In this context, quantum walks based on the adjacency and Laplacian matrices of the network are compared, and their responses to link failures is analyzed.
In this theoretical study, we analyze quantum walks on complex networks, which model network-based processes ranging from quantum computing to biology and even sociology. Specifically, we analytically relate the average long time probability distribu tion for the location of a unitary quantum walker to that of a corresponding classical walker. The distribution of the classical walker is proportional to the distribution of degrees, which measures the connectivity of the network nodes and underlies many methods for analyzing classical networks including website ranking. The quantum distribution becomes exactly equal to the classical distribution when the walk has zero energy and at higher energies the difference, the so-called quantumness, is bounded by the energy of the initial state. We give an example for which the quantumness equals a Renyi entropy of the normalized weighted degrees, guiding us to regimes for which the classical degree-dependent result is recovered and others for which quantum effects dominate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا