ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomistic calculations of charged point defects at grain boundaries in SrTiO$_3$

120   0   0.0 ( 0 )
 نشر من قبل Daniel Mutter
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Cong Tao




اسأل ChatGPT حول البحث

Oxygen vacancies have been identified to play an important role in accelerating grain growth in polycrystalline perovskite-oxide ceramics. In order to advance the fundamental understanding of growth mechanisms at the atomic scale, classical atomistic simulations were carried out to investigate the atomistic structures and oxygen vacancy formation energies at grain boundaries in the prototypical perovskite-oxide material SrTiO$_3$. In this work, we focus on two symmetric tilt grain boundaries, namely $Sigma$5(310)[001] and $Sigma$5(210)[001]. A one-dimensional continuum model is adapted to determine the electrostatic potential induced by charged lattice planes in atomistic structure models containing grain boundaries and point defects. By means of this model, electrostatic artifacts, which are inherent to supercell models with periodic or open boundary conditions, can be taken into account and corrected properly. We report calculated formation energies of oxygen vacancies on all the oxygen sites across boundaries between two misoriented grains, and we analyze and discuss the formation-energy values with respect to local charge densities at the vacant sites.

قيم البحث

اقرأ أيضاً

101 - R. Saniz , J. bekaert , B.Partoens 2021
We present a first-principles computational study of cation-Se $Sigma$3 (112) grain boundaries in CuGaSe$_2$. We discuss the structure of these grain boundaries, as well as the effect of native defects and Na impurities on their electronic properties . The formation energies show that the defects will tend to form preferentially at the grain boundaries, rather than in the grain interiors. We find that in Ga-rich growth conditions Cu vacancies as well as Ga at Cu and Cu at Ga antisites are mainly responsible for having the equilibrium Fermi level pinned toward the middle of the gap, resulting in carrier depletion. The Na at Cu impurity in its +1 charge state contributes to this. In Ga-poor growth conditions, on the other hand, the formation energies of Cu vacancies and Ga at Cu antisites are comparatively too high for any significant influence on carrier density or on the equilibrium Fermi level position. Thus, under these conditions, the Cu at Ga antisites give rise to a $p$-type grain boundary. Also, their formation energy is lower than the formation energy of Na at Cu impurities. Thus, the latter will fail to act as a hole barrier preventing recombination at the grain boundary, in contrast to what occurs in CuInSe$_2$ grain boundaries. We also discuss the effect of the defects on the electronic properties of bulk CuGaSe$_2$, which we assume reflect the properties of the grain interiors.
262 - R. K. Koju , Y. Mishin 2020
We show that molecular dynamics (MD) simulations are capable of reproducing the drag of solute segregation atmospheres by moving grain boundaries (GBs). Although lattice diffusion is frozen out on the MD timescale, the accelerated GB diffusion provid es enough atomic mobility to allow the segregated atoms to follow the moving GB. This finding opens the possibility of studying the solute drag effect with atomic precision using the MD approach. We demonstrate that a moving GB activates diffusion and alters the short-range order in the lattice regions swept during its motion. It is also shown that a moving GB drags an atmosphere of non-equilibrium vacancies, which accelerate diffusion in surrounding lattice regions.
The effect of a variety of intrinsic defects and defect clusters in bulk and thin films of SrTiO$_3$ on ferroelectric polarization and switching mechanism is investigated by means of density-functional-theory (DFT) based calculations and the Berry ph ase approach. Our results show that both the titanium Ti$_mathrm{Sr}^{bullet bullet}$ and strontium Sr$_mathrm{Ti}^{}$ antisite defects induce ferroelectric polarization in SrTiO$_3$, with the Ti$_mathrm{Sr}^{bullet bullet}$ defect causing a more pronounced spontaneous polarization and higher activation barriers of polarization reversal than Sr$_mathrm{Ti}^{}$. The presence of oxygen vacancies bound to the antisite defects can either enhance or diminish polarization depending on the configuration of the defect pair, but it always leads to larger activation barriers of polarization switching as compared to the antisite defects with no oxygen vacancies. We also show that the magnitude of spontaneous polarization in SrTiO$_3$ can be tuned by controlling the degree of Sr/Ti nonstroichiometry. Other intrinsic point defects such as Frenkel defect pairs and electron small polarons also contribute to the emergence of ferroelectric polarization in SrTiO$_{3}$.
We use atomistic simulations to investigate grain boundary (GB) phase transitions in el- emental body-centered cubic (bcc) metal tungsten. Motivated by recent modeling study of grain boundary phase transitions in [100] symmetric tilt boundaries in fa ce-centered cu- bic (fcc) copper, we perform a systematic investigation of [100] and [110] symmetric tilt high-angle and low-angle boundaries in bcc tungsten. The structures of these boundaries have been investigated previously by atomistic simulations in several different bcc metals including tungsten using the the {gamma}-surface method, which has limitations. In this work we use a recently developed computational tool based on the USPEX structure prediction code to perform an evolutionary grand canonical search of GB structure at 0 K. For high-angle [100] tilt boundaries the ground states generated by the evolutionary algorithm agree with the predictions of the {gamma}-surface method. For the [110] tilt boundaries, the search predicts novel high-density low-energy grain boundary structures and multiple grain boundary phases within the entire misorientation range. Molecular dynamics simulation demonstrate that the new structures are more stable at high temperature. We observe first-order grain boundary phase transitions and investigate how the structural multiplicity affects the mechanisms of the point defect absorption. Specifically, we demonstrate a two-step nucleation process, when initially the point defects are absorbed through a formation of a metastable GB structure with higher density, followed by a transformation of this structure into a GB interstitial loop or a different GB phase.
The strong spin-spin exchange interaction in some low-dimensional magnetic materials can give rise to a high group velocity and thermal conductivity contribution from magnons. One example is the incommensurate layered compounds (Sr,Ca,La)14Cu24O41. T he effects of grain boundaries and defects on quasi-one-dimensional magnon transport in these compounds are not well understood. Here we report the microstructures and anisotropic thermal transport properties of textured Sr14Cu24O41, which are prepared by solid-state reaction followed by spark plasma sintering. Transmission electron microscopy clearly reveals nano-layered grains and the presence of dislocations and planar defects. The thermal conductivity contribution and mean free paths of magnons in the textured samples are evaluated with the use of a kinetic model for one-dimensional magnon transport, and found to be suppressed significantly as compared to single crystals at low temperatures. The experimental results can be explained by a one-dimensional magnon-defect scattering model, provided that the magnon-grain boundary scattering mean free path in the anisotropic magnetic structure is smaller than the average length of these nano-layers along the c axis. The finding suggests low transmission coefficients for magnons across grain boundaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا