ﻻ يوجد ملخص باللغة العربية
In this work we consider the existence and uniqueness of the ground state of the regularized Hamiltonian of the Supermembrane in dimensions $D= 4,,5,,7$ and 11, or equivalently the $SU(N)$ Matrix Model. That is, the 0+1 reduction of the 10-dimensional $SU(N)$ Super Yang-Mills Hamiltonian. This ground state problem is associated with the solutions of the inner and outer Dirichlet problems for this operator, and their subsequent smooth patching (glueing) into a single state. We have discussed properties of the inner problem in a previous work, therefore we now investigate the outer Dirichlet problem for the Hamiltonian operator. We establish existence and uniqueness on unbounded valleys defined in terms of the bosonic potential. These are precisely those regions where the bosonic part of the potential is less than a given value $V_0$, which we set to be arbitrary. The problem is well posed, since these valleys are preserved by the action of the $SU(N)$ constraint. We first show that their Lebesgue measure is finite, subject to restrictions on $D$ in terms of $N$. We then use this analysis to determine a bound on the fermionic potential which yields the coercive property of the energy form. It is from this, that we derive the existence and uniqueness of the solution. As a by-product of our argumentation, we show that the Hamiltonian, restricted to the valleys, has spectrum purely discrete with finite multiplicity. Remarkably, this is in contrast to the case of the unrestricted space, where it is well known that the spectrum comprises a continuous segment. We discuss the relation of our work with the general ground state problem and the question of confinement in models with strong interactions.
We give an explicit differential equation which is expected to determine the instanton partition function in the presence of the full surface operator in N=2 SU(N) gauge theory. The differential equation arises as a quantization of a certain Hamilton
We study $mathcal{N} = 3$ supersymmetric Chern-Simons-matter theory coupled to matter in the fundamental representation of $SU(N)$. In the t Hooft large $N$ limit, we compute the exact $2 to 2$ scattering amplitudes of the fundamental scalar superfie
It is shown that the quantum ground state energy of particle of mass m and electric charge e moving on a compact Riemann surface under the influence of a constant magnetic field of strength B is E_0=eB/2m. Remarkably, this formula is completely indep
Quantum state wave functionals are constructed in exact form for the graviton-like field theory obtained by breaking down the topological symmetry of the string action related with the Euler characteristic of the world-surface; their continuous and d
We analyse the measure of the regularized matrix model of the supersymmetric potential valleys, $Omega$, of the Hamiltonian of non zero modes of supermembrane theory. This is the same as the Hamiltonian of the BFSS matrix model. We find sufficient co