ﻻ يوجد ملخص باللغة العربية
The spontaneous muonium-to-antimuonium conversion is one of the interesting charged lepton flavor violation processes. MACE is the next generation experiment to probe such a phenomenon. In models with a triplet Higgs to generate neutrino masses, such as Type-II seesaw and its variant, this process can be induced by the doubly-charged Higgs contained in it. In this article, we study the prospect of MACE to probe these models via the muonium-to-antimuonium transitions. After considering the limits from $mu^+ rightarrow e^+ gamma $ and $mu^+ rightarrow e^+ e^- e^+$, we find that MACE could probe a parameter space for the doubly-charged Higgs which is beyond the reach of LHC and other flavor experiments.
A new experimental search for muonium-antimuonium conversion was conducted at the Paul Scherrer Institute, Villigen, Switzerland. The preliminary analysis yielded one event fulfilling all required criteria at an expected background of 1.7(2) events d
A new upper limit for the probability of spontaneous muonium to antimuonium conversion was established at ${rm P_{Mbar{M}}} leq 8.2 cdot 10^{-11}$ (90%C.L.) in 0.1~T magnetic field, which implies consequences for speculative extensions to the standar
A new result from searching for muonium to antimuonium conversion is reported which sets an upper limit on the coupling constant in an assumed $(V-A) times (V-A)$ type interaction of $G_{Mbar{M}} leq 3cdot 10^{-3} G_F$ ~ (90% C.L.). A particular Z_
A new experiment has been set up at the Paul Scherrer Institut to search for muonium to antimuonium conversion. No event was found to fulfil the requested signature which consists of the coincident detection of both constituents of the antiatom in it
Doubly-charged Higgs bosons ($Delta^{--}/Delta^{++}$) appear in several extensions to the Standard Model and can be relatively light. We review the theoretical motivation for these states and present a study of the discovery reach in future runs of t