ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-relativistic Effective Quantum Mechanics of the Coulomb Interaction

121   0   0.0 ( 0 )
 نشر من قبل David Jacobs
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the ideas of effective field theory to nonrelativistic quantum mechanics. Utilizing an artificial boundary of ignorance as a calculational tool, we develop the effective theory using boundary conditions to encode short-ranged effects that are deliberately not modeled; thus, the boundary conditions play a role similar to the effective action in field theory. Unitarity is temporarily violated in this method, but is preserved on average. As a demonstration of this approach, we consider the Coulomb interaction and find that this effective quantum mechanics can predict the bound state energies to very high accuracy with a small number of fitting parameters. It is also shown to be equivalent to the theory of quantum defects, but derived here using an effective framework. The method respects electromagnetic gauge invariance and also can describe decays due to short-ranged interactions, such as those found in positronium. Effective quantum mechanics appears applicable for systems that admit analytic long-range descriptions, but whose short-ranged effects are not reliably or efficiently modeled. Potential applications of this approach include atomic and condensed matter systems, but it may also provide a useful perspective for the study of blackholes.



قيم البحث

اقرأ أيضاً

We study decoherence in a simple quantum mechanical model using two approaches. Firstly, we follow the conventional approach to decoherence where one is interested in solving the reduced density matrix from the perturbative master equation. Secondly, we consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. We show that both methods can accurately predict decoherence time scales. However, the perturbative master equation generically suffers from instabilities which prevents us to reliably calculate the systems total entropy increase. We also discuss the relevance of the results in our quantum mechanical model for interacting field theories.
369 - F. Becattini 2019
In this work the non-equilibrium density operator approach introduced by Zubarev more than 50 years ago to describe quantum systems at local thermodynamic equilibrium is revisited. This method - which was used to obtain the first Kubo formula of shea r viscosity, is especially suitable to describe quantum effects in fluids. This feature makes it a viable tool to describe the physics of the Quark Gluon Plasma in relativistic nuclear collisions.
In a recent paper (arXiv:1701.04298 [quant-ph]) Torov{s}, Gro{ss}ardt and Bassi claim that the potential necessary to support a composite particle in a gravitational field must necessarily cancel the relativistic coupling between internal and externa l degrees of freedom. As such a coupling is responsible for the gravitational redshift measured in numerous experiments, the above statement is clearly incorrect. We identify the simple mistake in the paper responsible for the incorrect claim.
To the best of our current understanding, quantum mechanics is part of the most fundamental picture of the universe. It is natural to ask how pure and minimal this fundamental quantum description can be. The simplest quantum ontology is that of the E verett or Many-Worlds interpretation, based on a vector in Hilbert space and a Hamiltonian. Typically one also relies on some classical structure, such as space and local configuration variables within it, which then gets promoted to an algebra of preferred observables. We argue that even such an algebra is unnecessary, and the most basic description of the world is given by the spectrum of the Hamiltonian (a list of energy eigenvalues) and the components of some particular vector in Hilbert space. Everything else - including space and fields propagating on it - is emergent from these minimal elements.
The Levi-Civita transformation is applied in the two-dimensional (2D) Dirac and Klein-Gordon (KG) equations with equal external scalar and vector potentials. The Coulomb and harmonic oscillator problems are connected via the Levi-Civita transformatio n. These connections lead to an approach to solve the Coulomb problems using the results of the harmonic oscillator potential in the above-mentioned relativistic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا