ترغب بنشر مسار تعليمي؟ اضغط هنا

Lesion characterization in spectral photon-counting tomosynthesis

83   0   0.0 ( 0 )
 نشر من قبل Erik Fredenberg
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has previously been shown that 2D spectral mammography can be used to discriminate between (likely benign) cystic and (potentially malignant) solid lesions in order to reduce unnecessary recalls in mammography. One limitation of the technique is, however, that the composition of overlapping tissue needs to be interpolated from a region surrounding the lesion. The purpose of this investigation was to demonstrate that lesion characterization can be done with spectral tomosynthesis, and to investigate whether the 3D information available in tomosynthesis can reduce the uncertainty from the interpolation of surrounding tissue. A phantom experiment was designed to simulate a cyst and a tumor, where the tumor was overlaid with a structure that made it mimic a cyst. In 2D, the two targets appeared similar in composition, whereas spectral tomosynthesis revealed the exact compositional difference. However, the loss of discrimination signal due to spread from the plane of interest was of the same strength as the reduction of anatomical noise. Results from a preliminary investigation on clinical tomosynthesis images of solid lesions yielded results that were consistent with the phantom experiments, but were still to some extent inconclusive. We conclude that lesion characterization is feasible in spectral tomosynthesis, but more data, as well as refinement of the calibration and discrimination algorithms, are needed to draw final conclusions about the benefit compared to 2D.



قيم البحث

اقرأ أيضاً

Measurements of breast density have the potential to improve the efficiency and reduce the cost of screening mammography through personalized screening. Breast density has traditionally been evaluated from the dense area in a mammogram, but volumetri c assessment methods, which measure the volumetric fraction of fibro-glandular tissue in the breast, are potentially more consistent and physically sound. The purpose of the present study is to evaluate a method for measuring the volumetric breast density using photon-counting spectral tomosynthesis. The performance of the method was evaluated using phantom measurements and clinical data from a small population (n=18). The precision was determined to 2.4 percentage points (pp) of volumetric breast density. Strong correlations were observed between contralateral (R^2=0.95) and ipsilateral (R^2=0.96) breast-density measurements. The measured breast density was anti-correlated to breast thickness, as expected, and exhibited a skewed distribution in the range [3.7%, 55%] and with a median of 18%. We conclude that the method yields promising results that are consistent with expectations. The relatively high precision of the method may enable novel applications such as treatment monitoring.
We present the first evaluation of a recently developed silicon-strip detector for photon-counting dual-energy breast tomosynthesis. The detector is well suited for tomosynthesis with high dose efficiency and intrinsic scatter rejection. A method was developed for measuring the spatial resolution of a system based on the detector in terms of the three-dimensional modulation transfer function (MTF). The measurements agreed well with theoretical expectations, and it was seen that depth resolution was won at the cost of a slightly decreased lateral resolution. This may be a justifiable trade-off as clinical images acquired with the system indicate improved conspicuity of breast lesions. The photon-counting detector enables dual-energy subtraction imaging with electronic spectrumsplitting. This improved the detectability of iodine in phantom measurements, and the detector was found to be stable over typical clinical acquisition times. A model of the energy resolution showed that further improvements are within reach by optimization of the detector.
Phase-contrast imaging is an emerging technology that may increase the signal-difference-to-noise ratio in medical imaging. One of the most promising phase-contrast techniques is Talbot interferometry, which, combined with energy-sensitive photon-cou nting detectors, enables spectral differential phase-contrast mammography. We have evaluated a realistic system based on this technique by cascaded-systems analysis and with a task-dependent ideal-observer detectability index as a figure-of-merit. Beam-propagation simulations were used for validation and illustration of the analytical framework. Differential phase contrast improved detectability compared to absorption contrast, in particular for fine tumor structures. This result was supported by images of human mastectomy samples that were acquired with a conventional detector. The optimal incident energy was higher in differential phase contrast than in absorption contrast when disregarding the setup design energy. Further, optimal weighting of the transmitted spectrum was found to have a weaker energy dependence than for absorption contrast. Taking the design energy into account yielded a superimposed maximum on both detectability as a function of incident energy, and on optimal weighting. Spectral material decomposition was not facilitated by phase contrast, but phase information may be used instead of spectral information.
Fiber-like features are an important aspect of breast imaging. Vessels and ducts are present in all breast images, and spiculations radiating from a mass can indicate malignancy. Accordingly, fiber objects are one of the three types of signals used i n the American College of Radiology digital mammography (ACR-DM) accreditation phantom. This work focuses on the image properties of fiber-like structures in digital breast tomosynthesis (DBT) and how image reconstruction can affect their appearance. The impact of DBT image reconstruction algorithm and regularization strength on the conspicuity of fiber-like signals of various orientations is investigated in simulation. A metric is developed to characterize this orientation dependence and allow for quantitative comparison of algorithms and associated parameters in the context of imaging fiber signals. The imaging properties of fibers, characterized in simulation, are then demonstrated in detail with physical DBT data of the ACR-DM phantom. The characterization of imaging of fiber signals is used to explain features of an actual clinical DBT case. For the algorithms investigated, at low regularization setting, the results show a striking variation in conspicuity as a function of orientation in the viewing plane. In particular, the conspicuity of fibers nearly aligned with the plane of the X-ray source trajectory is decreased relative to more obliquely oriented fibers. Increasing regularization strength mitigates this orientation dependence at the cost of increasing depth blur of these structures.
Photon-counting computed tomography (PCCT) with energy discrimination capabilities hold great potentials to improve the limitations of the conventional CT, including better signal-to-noise ratio (SNR), improved contrast-to-noise ratio (CNR), lower ra diation dose, and most importantly, simultaneous multiple material identification. One potential way of material identification is via calculation of effective atomic number and effective electron density from PCCT image data. However, the current methods for calculating effective atomic number and effective electron density from PCCT image data are mostly based on semi-empirical models and accordingly are not sufficiently accurate. Here, we present a physics-based model to calculate the effective atomic number and effective electron density of various matters, including single element substances, molecular compounds, and multi-material mixtures as well. The model was validated over several materials under various combinations of energy bins. A PCCT system was simulated to generate the PCCT image data, and the proposed model was applied to the PCCT image data. Our model yielded a relative standard deviations for effective atomic numbers and effective electron densities at less than 1%. Our results further showed that five different materials can be simultaneously identified and well separated in a effective atomic number - effective electron density map. The model could serve as a basis for simultaneous material identification from PCCT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا