ﻻ يوجد ملخص باللغة العربية
In this work, we briefly review the progress made in the formulation of hydrodynamics with spin with emphasis on the application to the relativistic heavy-ion collisions. In particular, we discuss the formulation of hydrodynamics with spin for perfect-fluid and the first order viscous corrections with some discussion on the calculation of spin kinetic coefficients. Finally, we apply relativistic hydrodynamics with spin to the relativistic heavy-ion collisions to calculate the spin polarization of $Lambda$-particles.
The concept of the Wigner function is used to construct a semi-classical kinetic theory describing the evolution of the axial-current phase-space density of spin-1/2 particles in the relaxation time approximation. The resulting approach can be used t
The relativistic three-body problem is approached via the extension of the SL(2,C) group to the Sp(4,C) one. In terms of Sp(4,C) spinors, a Dirac-like equation with three-body kinematics is composed. After introducing the linear in coordinates intera
The dynamics of baryon-antibaryon annihilation and reproduction ($B{bar B} leftrightarrow 3 M$) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super
Relativistic hydrodynamics represents a powerful tool to investigate the time evolution of the strongly interacting quark gluon plasma created in ultrarelativistic heavy ion collisions. The equations are solved often numerically, and numerous analyti
The program FeynRules is a Mathematica package developed to facilitate the implementation of new physics theories into high-energy physics tools. Starting from a minimal set of information such as the model gauge symmetries, its particle content, par