ﻻ يوجد ملخص باللغة العربية
The vast majority of image recovery tasks are ill-posed problems. As such, methods that are based on optimization use cost functions that consist of both fidelity and prior (regularization) terms. A recent line of works imposes the prior by the Regularization by Denoising (RED) approach, which exploits the good performance of existing image denoising engines. Yet, the relation of RED to explicit prior terms is still not well understood, as previous work requires too strong assumptions on the denoisers. In this paper, we make two contributions. First, we show that the RED gradient can be seen as a (sub)gradient of a prior function--but taken at a denoised version of the point. As RED is typically applied with a relatively small noise level, this interpretation indicates a similarity between RED and traditional gradients. This leads to our second contribution: We propose to combine RED with the Back-Projection (BP) fidelity term rather than the common Least Squares (LS) term that is used in previous works. We show that the advantages of BP over LS for image deblurring and super-resolution, which have been demonstrated for traditional gradients, carry on to the RED approach.
Regularization by denoising (RED) is a powerful framework for solving imaging inverse problems. Most RED algorithms are iterative batch procedures, which limits their applicability to very large datasets. In this paper, we address this limitation by
Regularization by denoising (RED) is a broadly applicable framework for solving inverse problems by using priors specified as denoisers. While RED has been shown to provide state-of-the-art performance in a number of applications, existing RED algori
Inverse problems in image processing are typically cast as optimization tasks, consisting of data-fidelity and stabilizing regularization terms. A recent regularization strategy of great interest utilizes the power of denoising engines. Two such meth
A geometric interpretation for the A-fidelity between two states of a qubit system is presented, which leads to an upper bound of the Bures fidelity. The metrics defined based on the A-fidelity are studied by numerical method. An alternative generali
Image denoising is a well-known and well studied problem, commonly targeting a minimization of the mean squared error (MSE) between the outcome and the original image. Unfortunately, especially for severe noise levels, such Minimum MSE (MMSE) solutio