ترغب بنشر مسار تعليمي؟ اضغط هنا

A computational reduction for many base cases in profinite telescopic algebraic $K$-theory

125   0   0.0 ( 0 )
 نشر من قبل Daniel Davis
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Daniel G. Davis




اسأل ChatGPT حول البحث

For primes $pgeq 5 $, $K(KU_p)$ -- the algebraic $K$-theory spectrum of $(KU)^{wedge}_p$, Morava $K$-theory $K(1)$, and Smith-Toda complex $V(1)$, Ausoni and Rognes conjectured (alongside related conjectures) that $L_{K(1)}S^0 mspace{-1.5mu}xrightarrow{mspace{-2mu}text{unit} , i}~mspace{-7mu}(KU)^{wedge}_p$ induces a map $K(L_{K(1)}S^0) wedge v_2^{-1}V(1) to K(KU_p)^{hmathbb{Z}^times_p} wedge v_2^{-1}V(1)$ that is an equivalence. Since the definition of this map is not well understood, we consider $K(L_{K(1)}S^0) wedge v_2^{-1}V(1) to (K(KU_p) wedge v_2^{-1}V(1))^{hmathbb{Z}^times_p}$, which is induced by $i$ and also should be an equivalence. We show that for any closed $G < mathbb{Z}^times_p$, $pi_ast((K(KU_p) wedge v_2^{-1}V(1))^{hG})$ is a direct sum of two pieces given by (co)invariants and a coinduced module, for $K(KU_p)_ast(V(1))[v_2^{-1}]$. When $G = mathbb{Z}^times_p$, the direct sum is, conjecturally, $K(L_{K(1)}S^0)_ast(V(1))[v_2^{-1}]$ and, by using $K(L_p)_ast(V(1))[v_2^{-1}]$, where $L_p = ((KU)^{wedge}_p)^{hmathbb{Z}/((p-1)mathbb{Z})}$, the summands simplify. The Ausoni-Rognes conjecture suggests that in [(-)^{hmathbb{Z}^times_p} wedge v_2^{-1}V(1) simeq (K(KU_p) wedge v_2^{-1}V(1))^{hmathbb{Z}^times_p},] $K(KU_p)$ fills in the blank; we show that for any $G$, the blank can be filled by $(K(KU_p))^mathrm{dis}_mathcal{O}$, a discrete $mathbb{Z}^times_p$-spectrum built out of $K(KU_p)$.



قيم البحث

اقرأ أيضاً

53 - Daniel G. Davis 2020
Let $p$ be a prime, $n geq 1$, $K(n)$ the $n$th Morava $K$-theory spectrum, $mathbb{G}_n$ the extended Morava stabilizer group, and $K(A)$ the algebraic $K$-theory spectrum of a commutative $S$-algebra $A$. For a type $n+1$ complex $V_n$, Ausoni and Rognes conjectured that (a) the unit map $i_n: L_{K(n)}(S^0) to E_n$ from the $K(n)$-local sphere to the Lubin-Tate spectrum induces a map [K(L_{K(n)}(S^0)) wedge v_{n+1}^{-1}V_n to (K(E_n))^{hmathbb{G}_n} wedge v_{n+1}^{-1}V_n] that is a weak equivalence, where (b) since $mathbb{G}_n$ is profinite, $(K(E_n))^{hmathbb{G}_n}$ denotes a continuous homotopy fixed point spectrum, and (c) $pi_ast(-)$ of the target of the above map is the abutment of a homotopy fixed point spectral sequence. For $n = 1$, $p geq 5$, and $V_1 = V(1)$, we give a way to realize the above map and (c), by proving that $i_1$ induces a map [K(L_{K(1)}(S^0)) wedge v_{2}^{-1}V_1 to (K(E_1) wedge v_{2}^{-1}V_1)^{hmathbb{G}_1},] where the target of this map is a continuous homotopy fixed point spectrum, with an associated homotopy fixed point spectral sequence. Also, we prove that there is an equivalence [(K(E_1) wedge v_{2}^{-1}V_1)^{hmathbb{G}_1} simeq (K(E_1))^{widetilde{h}mathbb{G}_1} wedge v_2^{-1}V_1,] where $(K(E_1))^{widetilde{h}mathbb{G}_1}$ is the homotopy fixed points with $mathbb{G}_1$ regarded as a discrete group.
The family of Thom spectra $y(n)$ interpolate between the sphere spectrum and the mod two Eilenberg-MacLane spectrum. Computations of Mahowald, Ravenel, and Shick and the authors show that the $E_1$ ring spectrum $y(n)$ has chromatic complexity $n$. We show that topological periodic cyclic homology of $y(n)$ has chromatic complexity $n+1$. This gives evidence that topological periodic cyclic homology shifts chromatic height at all chromatic heights, supporting a variant of the Ausoni--Rognes red-shift conjecture. We also show that relative algebraic K-theory, topological cyclic homology, and topological negative cyclic homology of $y(n)$ at least preserve chromatic complexity.
We consider the algebraic K-theory of a truncated polynomial algebra in several commuting variables, K(k[x_1, ..., x_n]/(x_1^a_1, ..., x_n^a_n)). This naturally leads to a new generalization of the big Witt vectors. If k is a perfect field of positiv e characteristic we describe the K-theory computation in terms of a cube of these Witt vectors on N^n. If the characteristic of k does not divide any of the a_i we compute the K-groups explicitly. We also compute the K-groups modulo torsion for k=Z. To understand this K-theory spectrum we use the cyclotomic trace map to topological cyclic homology, and write TC(k[x_1, ..., x_n]/(x_1^a_1, ..., x_n^a_n)) as the iterated homotopy cofiber of an n-cube of spectra, each of which is easier to understand. Updated: This is a substantial revision. We corrected several errors in the description of the Witt vectors on a truncation set on N^n and modified the key proofs accordingly. We also replaces several topological statement with purely algebraic ones. Most arguments have been reworked and streamlined.
We show that K_{2i}(Z[x,y]/(xy),(x,y)) is free abelian of rank 1 and that K_{2i+1}(Z[x,y]/(xy),(x,y)) is finite of order (i!)^2. We also compute K_{2i+1}(Z[x,y]/(xy),(x,y)) in low degrees.
146 - Anssi Lahtinen 2012
In this note we prove the analogue of the Atiyah-Segal completion theorem for equivariant twisted K-theory in the setting of an arbitrary compact Lie group G and an arbitrary twisting of the usually considered type. The theorem generalizes a result b y C. Dwyer, who has proven the theorem for finite G and twistings of a more restricted type. Whi
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا