ترغب بنشر مسار تعليمي؟ اضغط هنا

SHAM through the lens of a hydrodynamical simulation

48   0   0.0 ( 0 )
 نشر من قبل Ginevra Favole
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the IllustrisTNG300 hydrodynamical simulation to study the dependence of the galaxy two-point correlation function on a broad range of secondary halo and galactic properties. We construct galaxy mock catalogues using a standard sub-halo abundance matching scheme coupled with a secondary assignment between galaxy colour or specific star formation rate and the following halo properties: starvation redshift z$_{rm starve}$, concentration at infall, dark matter density contrast $delta_R^{rm env}$, tidal anisotropy $alpha_R$, and tidal overdensity $delta_R$. The last two quantities allow us to fully characterise the tidal field of our haloes, acting as mediators between their internal and large-scale properties. The resulting mock catalogues return different levels of agreement with the IllustrisTNG300 measurements and strongly depend on the secondary halo property employed. Among all the secondary halo properties tested, we find that z$_{rm starve}$ and $delta_R$ are the ones that best trace the large-scale structure, producing reliable clustering predictions for different samples of red/blue and quenched/star-forming galaxies.

قيم البحث

اقرأ أيضاً

A minimum in stellar velocity dispersion is often observed in the central regions of disc galaxies. To investigate the origin of this feature, known as a {sigma}-drop, we analyse the stellar kinematics of a high-resolution N-body + smooth particle hy drodynamical simulation, which models the secular evolution of an unbarred disc galaxy. We compared the intrinsic mass-weighted kinematics to the recovered luminosity-weighted ones. The latter were obtained by analysing synthetic spectra produced by a new code, SYNTRA, that generates synthetic spectra by assigning a stellar population synthesis model to each star particle based on its age and metallicity. The kinematics were derived from the synthetic spectra as in real spectra to mimic the kinematic analysis of real galaxies. We found that the recovered luminosity-weighted kinematics in the centre of the simulated galaxy are biased to higher rotation velocities and lower velocity dispersions due to the presence of young stars in a thin and kinematically cool disc, and are ultimately responsible for the {sigma}-drop.
The Cheshire Cat is a relatively poor group of galaxies dominated by two luminous elliptical galaxies surrounded by at least four arcs from gravitationally lensed background galaxies that give the system a humorous appearance. Our combined optical/X- ray study of this system reveals that it is experiencing a line of sight merger between two groups with a roughly equal mass ratio with a relative velocity of ~1350 km/s. One group was most likely a low-mass fossil group, while the other group would have almost fit the classical definition of a fossil group. The collision manifests itself in a bimodal galaxy velocity distribution, an elevated central X-ray temperature and luminosity indicative of a shock, and gravitational arc centers that do not coincide with either large elliptical galaxy. One of the luminous elliptical galaxies has a double nucleus embedded off-center in the stellar halo. The luminous ellipticals should merge in less than a Gyr, after which observers will see a massive 1.2-1.5 x 10^14 solar mass fossil group with an M_r = -24.0 brightest group galaxy at its center. Thus, the Cheshire Cat offers us the first opportunity to study a fossil group progenitor. We discuss the limitations of the classical definition of a fossil group in terms of magnitude gaps between the member galaxies. We also suggest that if the merging of fossil (or near-fossil) groups is a common avenue for creating present-day fossil groups, the time lag between the final galactic merging of the system and the onset of cooling in the shock-heated core could account for the observed lack of well-developed cool cores in some fossil groups.
Cosmological simulations still lack numerical resolution or physical processes to simulate dwarf galaxies in sufficient details. Accurate numerical simulations of individual dwarf galaxies are thus still in demand. We aim at (i) studying in detail th e coupling between stars and gas in a galaxy, exploiting the so-called stellar hydrodynamical approach, and (ii) studying the chemo-dynamical evolution of individual galaxies starting from self-consistently calculated initial gas distributions. We present a novel chemo-dynamical code in which the dynamics of gas is computed using the usual hydrodynamics equations, while the dynamics of stars is described by the stellar hydrodynamics approach, which solves for the first three moments of the collisionless Boltzmann equation. The feedback from stellar winds and dying stars is followed in detail. In particular, a novel and detailed approach has been developed to trace the aging of various stellar populations, which enables an accurate calculation of the stellar feedback depending on the stellar age. We build initial equilibrium models of dwarf galaxies that take gas self-gravity into account and present different levels of rotational support. Models with high rotational support develop prominent bipolar outflows; a newly-born stellar population in these models is preferentially concentrated to the galactic midplane. Models with little rotational support blow away a large fraction of the gas and the resulting stellar distribution is extended and diffuse. The stellar dynamics turns out to be a crucial aspect of galaxy evolution. If we artificially suppress stellar dynamics, supernova explosions occur in a medium heated and diluted by the previous activity of stellar winds, thus artificially enhancing the stellar feedback (abridged).
We study the two main constituent galaxies of a constrained simulation of the Local Group as candidates for the Milky Way (MW) and Andromeda (M31). We focus on the formation of the stellar discs and its relation to the formation of the group as a ric h system with two massive galaxies, and investigate the effects of mergers and accretion as drivers of morphological transformations. We use a state-of-the-art hydrodynamical code which includes star formation, feedback and chemical enrichment to carry out our study. We run two simulations, where we include or neglect the effects of radiation pressure from stars, to investigate the impact of this process on the morphologies and star formation rates of the simulated galaxies. We find that the simulated M31 and MW have different formation histories, even though both inhabit, at z=0, the same environment. These differences directly translate into and explain variations in their star formation rates, in-situ fractions and final morphologies. The M31 candidate has an active merger history, as a result of which its stellar disc is unable to survive unaffected until the present time. In contrast, the MW candidate has a smoother history with no major mergers at late times, and forms a disc that grows steadily; at z=0 the simulated MW has an extended, rotationally-supported disc which is dominant over the bulge. Our two feedback implementations predict similar evolution of the galaxies and their discs, although some variations are detected, the most important of which is the formation time of the discs: in the model with weaker/stronger feedback the discs form earlier/later. In summary, by comparing the formation histories of the two galaxies, we conclude that the particular merger/accretion history of a galaxy rather than its environment at the LG-scales is the main driver of the formation and subsequent growth or destruction of galaxy discs.
128 - Maria E. De Rossi 2015
The evolution of the metal content of galaxies and its relations to other global properties [such as total stellar mass (M*), circular velocity, star formation rate (SFR), halo mass, etc.] provides important constraints on models of galaxy formation. Here we examine the evolution of metallicity scaling relations of simulated galaxies in the Galaxies-Intergalactic Medium Interaction Calculation suite of cosmological simulations. We make comparisons to observations of the correlation of gas-phase abundances with M* (the mass-metallicity relation, MZR), as well as with both M* and SFR or gas mass fraction (the so-called 3D fundamental metallicity relations, FMRs). The simulated galaxies follow the observed local MZR and FMRs over an order of magnitude in M*, but overpredict the metallicity of massive galaxies (log M* > 10.5), plausibly due to inefficient feedback in this regime. We discuss the origin of the MZR and FMRs in the context of galactic outflows and gas accretion. We examine the evolution of mass-metallicity relations defined using different elements that probe the three enrichment channels (SNII, SNIa, and AGB stars). Relations based on elements produced mainly by SNII evolve weakly, whereas those based on elements produced preferentially in SNIa/AGB exhibit stronger evolution, due to the longer timescales associated with these channels. Finally, we compare the relations of central and satellite galaxies, finding systematically higher metallicities for satellites, as observed. We show this is due to the removal of the metal poor gas reservoir that normally surrounds galaxies and acts to dilute their gas-phase metallicity (via cooling/accretion onto the disk), but is lost due to ram pressure stripping for satellites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا