ترغب بنشر مسار تعليمي؟ اضغط هنا

Unraveling S&P500 stock volatility and networks -- An encoding-and-decoding approach

116   0   0.0 ( 0 )
 نشر من قبل Xiaodong Wang
 تاريخ النشر 2021
  مجال البحث مالية الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Volatility of financial stock is referring to the degree of uncertainty or risk embedded within a stocks dynamics. Such risk has been received huge amounts of attention from diverse financial researchers. By following the concept of regime-switching model, we proposed a non-parametric approach, named encoding-and-decoding, to discover multiple volatility states embedded within a discrete time series of stock returns. The encoding is performed across the entire span of temporal time points for relatively extreme events with respect to a chosen quantile-based threshold. As such the return time series is transformed into Bernoulli-variable processes. In the decoding phase, we computationally seek for locations of change points via estimations based on a new searching algorithm conjunction to the Bayesian information criterion applied on the observed collection of recurrence times upon the binary process. Besides the independence required for building the Geometric distributional likelihood function, the proposed approach can functionally partition the entire return time series into a collection of homogeneous segments without any assumptions of dynamic structure and underlying distributions. In the numerical experiments, our approach is found favorably compared with Viterbis under Hidden Markov Model (HMM) settings. In the real data applications, volatility dynamics of every single stock of S&P500 are computed and revealed. Then, a non-linear dependency of any stock-pair is derived by measuring through concurrent volatility states. Finally, various networks dealing with distinct financial implications are consequently established to represent different aspects of global connectivity among all stocks in S&P500.



قيم البحث

اقرأ أيضاً

One of the major issues studied in finance that has always intrigued, both scholars and practitioners, and to which no unified theory has yet been discovered, is the reason why prices move over time. Since there are several well-known traditional tec hniques in the literature to measure stock market volatility, a central point in this debate that constitutes the actual scope of this paper is to compare this common approach in which we discuss such popular techniques as the standard deviation and an innovative methodology based on Econophysics. In our study, we use the concept of Tsallis entropy to capture the nature of volatility. More precisely, what we want to find out is if Tsallis entropy is able to detect volatility in stock market indexes and to compare its values with the ones obtained from the standard deviation. Also, we shall mention that one of the advantages of this new methodology is its ability to capture nonlinear dynamics. For our purpose, we shall basically focus on the behaviour of stock market indexes and consider the CAC 40, MIB 30, NIKKEI 225, PSI 20, IBEX 35, FTSE 100 and SP 500 for a comparative analysis between the approaches mentioned above.
There are several researches that deal with the behavior of SEs and their relationships with different economical factors. These range from papers dealing with this subject through econometrical procedures to statistical methods known as copula. This article considers the impact of oil and gold price on Tehran Stock Exchange market (TSE). Oil and gold are two factors that are essential for the economy of Iran and their price are determined in the global market. The model used in this study is ARIMA-Copula. We used data from January 1998 to January 2011 as training data to find the appropriate model. The cross validation of model is measured by data from January 2011 to June 2011. We conclude that: (i) there is no significant direct relationship between gold price and the TSE index, but the TSE is indirectly influenced by gold price through other factors such as oil; and (ii) the TSE is not independent of the volatility in oil price and Clayton copula can describe such dependence structure between TSE and the oil price. Based on the property of Clayton copula, which has lower tail dependency, as the oil price drops, stock index falls. This means that decrease in oil price has an adverse effect on Iranian economy.
We propose a novel method to quantify the clustering behavior in a complex time series and apply it to a high-frequency data of the financial markets. We find that regardless of used data sets, all data exhibits the volatility clustering properties, whereas those which filtered the volatility clustering effect by using the GARCH model reduce volatility clustering significantly. The result confirms that our method can measure the volatility clustering effect in financial market.
216 - Shinsuke Koyama 2012
Neural coding is a field of study that concerns how sensory information is represented in the brain by networks of neurons. The link between external stimulus and neural response can be studied from two parallel points of view. The first, neural enco ding refers to the mapping from stimulus to response, and primarily focuses on understanding how neurons respond to a wide variety of stimuli, and on constructing models that accurately describe the stimulus-response relationship. Neural decoding, on the other hand, refers to the reverse mapping, from response to stimulus, where the challenge is to reconstruct a stimulus from the spikes it evokes. Since neuronal response is stochastic, a one-to-one mapping of stimuli into neural responses does not exist, causing a mismatch between the two viewpoints of neural coding. Here, we use these two perspectives to investigate the question of what rate coding is, in the simple setting of a single stationary stimulus parameter and a single stationary spike train represented by a renewal process. We show that when rate codes are defined in terms of encoding, i.e., the stimulus parameter is mapped onto the mean firing rate, the rate decoder given by spike counts or the sample mean, does not always efficiently decode the rate codes, but can improve efficiency in reading certain rate codes, when correlations within a spike train are taken into account.
313 - Tian Qiu 2008
We investigate the probability distribution of the volatility return intervals $tau$ for the Chinese stock market. We rescale both the probability distribution $P_{q}(tau)$ and the volatility return intervals $tau$ as $P_{q}(tau)=1/bar{tau} f(tau/bar {tau})$ to obtain a uniform scaling curve for different threshold value $q$. The scaling curve can be well fitted by the stretched exponential function $f(x) sim e^{-alpha x^{gamma}}$, which suggests memory exists in $tau$. To demonstrate the memory effect, we investigate the conditional probability distribution $P_{q} (tau|tau_{0})$, the mean conditional interval $<tau|tau_{0}>$ and the cumulative probability distribution of the cluster size of $tau$. The results show clear clustering effect. We further investigate the persistence probability distribution $P_{pm}(t)$ and find that $P_{-}(t)$ decays by a power law with the exponent far different from the value 0.5 for the random walk, which further confirms long memory exists in $tau$. The scaling and long memory effect of $tau$ for the Chinese stock market are similar to those obtained from the United States and the Japanese financial markets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا