ﻻ يوجد ملخص باللغة العربية
We present a case study of using a novel method to identify red supergiant (RSG) candidates in NGC 6822, based on their 1.6 $mu$m H-bump. We collected 32 bands of photometric data for NGC 6822 ranging from optical to MIR. By using the theoretical spectra from MARCS, we demonstrate that there is a prominent difference around 1.6 $mu$m (H-bump) between low-surface-gravity (LSG) and high-surface-gravity (HSG) targets. Taking advantage of this feature, we identify efficient color-color diagrams (CCDs) of rzH and rzK to separate HSG and LSG targets from crossmatching of optical and NIR data. Moreover, synthetic photometry from ATLAS9 also give similar results. Further separating RSG candidates from the rest of the LSG candidates is done by using semi-empirical criteria on NIR CMDs and resulted in 323 RSG candidates. Meanwhile, the simulation of foreground stars from Besanc{c}on models also indicates that our selection criteria is largely free from the contamination of Galactic giants. In addition to the H-bump method, we also use the traditional BVR method as a comparison and/or supplement, by applying a slightly aggressive cut to select as much as possible RSG candidates (358 targets). Furthermore, the Gaia astrometric solution is used to constrain the sample, where 181 and 193 targets were selected from the H-bump and BVR method, respectively. The percentages of selected targets in both methods are similar as $sim$60%, indicating the comparable accuracy of the two methods. In total, there are 234 RSG candidates after combining targets from both methods with 140 ($sim$60%) of them in common. The final RSG candidates are in the expected locations on the MIR CMDs, while the spatial distribution is also coincident with the FUV-selected star formation regions, suggesting the selection is reasonable and reliable.
We present near-IR spectroscopy of red supergiant (RSG) stars in NGC 6822, obtained with the new VLT-KMOS instrument. From comparisons with model spectra in the J-band we determine the metallicity of 11 RSGs, finding a mean value of [Z] = -0.52 $pm$
In the fourth paper of this series, we present the metallicity-dependent Sloan Digital Sky Survey (SDSS) stellar color loci of red giant stars, using a spectroscopic sample of red giants in the SDSS Stripe 82 region. The stars span a range of 0.55 --
We examine high-cadence space photometry taken by the Transiting Exoplanet Survey Satellite (TESS) of a sample of evolved massive stars (26 Wolf-Rayet stars and 8 Luminous Blue Variables or candidate LBVs). To avoid confusion problems, only stars wit
Betelgeuse, a nearby red supergiant, is a runaway star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the
The multiplicity properties of massive stars are one of the important outstanding issues in stellar evolution. Quantifying the binary statistics of all evolutionary phases is essential to paint a complete picture of how and when massive stars interac