ترغب بنشر مسار تعليمي؟ اضغط هنا

A restless supermassive black hole in the galaxy J0437+2456

372   0   0.0 ( 0 )
 نشر من قبل Dominic Pesce
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results from an observing campaign to confirm the peculiar motion of the supermassive black hole (SMBH) in J0437+2456 first reported in Pesce et al. (2018). Deep observations with the Arecibo Observatory have yielded a detection of neutral hydrogen (HI) emission, from which we measure a recession velocity of 4910 km s$^{-1}$ for the galaxy as a whole. We have also obtained near-infrared integral field spectroscopic observations of the galactic nucleus with the Gemini North telescope, yielding spatially resolved stellar and gas kinematics with a central velocity at the innermost radii ($0.1^{prime prime} approx 34$ pc) of 4860 km s$^{-1}$. Both measurements differ significantly from the $sim$4810 km s$^{-1}$ H$_2$O megamaser velocity of the SMBH, supporting the prior indications of a velocity offset between the SMBH and its host galaxy. However, the two measurements also differ significantly from one another, and the galaxy as a whole exhibits a complex velocity structure that implies the system has recently been dynamically disturbed. These results make it clear that the SMBH is not at rest with respect to the systemic velocity of the galaxy, though the specific nature of the mobile SMBH -- i.e., whether it traces an ongoing galaxy merger, a binary black hole system, or a gravitational wave recoil event -- remains unclear.

قيم البحث

اقرأ أيضاً

91 - Anil Seth 2014
Ultracompact dwarf galaxies (UCDs) are among the densest stellar systems in the universe. These systems have masses up to 200 million solar masses, but half light radii of just 3-50 parsecs. Dynamical mass estimates show that many UCDs are more massi ve than expected from their luminosity. It remains unclear whether these high dynamical mass estimates are due to the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we present the detection of a supermassive black hole in a massive UCD. Adaptive optics kinematic data of M60-UCD1 show a central velocity dispersion peak above 100 km/s and modest rotation. Dynamical modeling of these data reveals the presence of a supermassive black hole with mass of 21 million solar masses. This is 15% of the objects total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1s stellar mass is consistent with its luminosity, implying many other UCDs may also host supermassive black holes. This suggests a substantial population of previously unnoticed supermassive black holes.
Supermassive black hole (SMBH) binaries residing at the core of merging galaxies are recently found to be strongly affected by the rotation of their host galaxies. The highly eccentric orbits that form when the host is counterrotating emit strong bur sts of gravitational waves that propel rapid SMBH binary coalescence. Most prior work, however, focused on planar orbits and a uniform rotation profile, an unlikely interaction configuration. However, the coupling between rotation and SMBH binary evolution appears to be such a strong dynamical process that it warrants further investigation. This study uses direct N-body simulations to isolate the effect of galaxy rotation in more realistic interactions. In particular, we systematically vary the SMBH orbital plane with respect to the galaxy rotation axis, the radial extent of the rotating component, and the initial eccentricity of the SMBH binary orbit. We find that the initial orbital plane orientation and eccentricity alone can change the inspiral time by an order of magnitude. Because SMBH binary inspiral and merger is such a loud gravitational wave source, these studies are critical for the future gravitational wave detector, LISA, an ESA/NASA mission currently set to launch by 2034.
During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form a supermassive black hole binary; this binary can eject stars via 3-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone -- this is the well-known final parsec problem. However it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N larger than 500K, we find that the evolution of the SMBH binary is convergent, and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of SMBH binary settles into an orbit that is in a corotation resonance with the background rotating model, and the coalescence time is roughly few hundred Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.
The centre of our Milky Way harbours the closest candidate for a supermassive black hole. The source is thought to be powered by radiatively inefficient accretion of gas from its environment. This form of accretion is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which it can be fed. However, the magnetization of the gas, a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of the accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to the observed synchrotron emission. Here we report multi-frequency measurements with several radio telescopes of a newly discovered pulsar close to the Galactic Centre and show that its unusually large Faraday rotation indicates a dynamically relevant magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission from the black hole, from radio to X-rays.
In this paper we consider a scenario where the currently observed hypervelocity stars in our Galaxy have been ejected from the Galactic center as a result of dynamical interactions with an intermediate-mass black hole (IMBH) orbiting the central supe rmassive black hole (SMBH). By performing 3-body scattering experiments, we calculate the distribution of the ejected stars velocities given various parameters of the IMBH-SMBH binary: IMBH mass, semimajor axis and eccentricity. We also calculate the rates of change of the BH binary orbital elements due to those stellar ejections. One of our new findings is that the ejection rate depends (although mildly) on the rotation of the stellar nucleus (its total angular momentum). We also compare the ejection velocity distribution with that produced by the Hills mechanism (stellar binary disruption) and find that the latter produces faster stars on average. Also, the IMBH mechanism produces an ejection velocity distribution which is flattened towards the BH binary plane while the Hills mechanism produces a spherically symmetric one. The results of this paper will allow us in the future to model the ejection of stars by an evolving BH binary and compare both models with textit{Gaia} observations, for a wide variety of environments (galactic nuclei, globular clusters, the Large Magellanic Clouds, etc.).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا