ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric Heat Flow Method for Legged Locomotion Planning

264   0   0.0 ( 0 )
 نشر من قبل Mohamed Ali Belabbas
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose in this paper a motion planning method for legged robot locomotion based on Geometric Heat Flow framework. The motion planning task is challenging due to the hybrid nature of dynamics and contact constraints. We encode the hybrid dynamics and constraints into Riemannian inner product, and this inner product is defined so that short curves correspond to admissible motions for the system. We rely on the affine geometric heat flow to deform an arbitrary path connecting the desired initial and final states to this admissible motion. The method is able to automatically find the trajectory of robots center of mass, feet contact positions and forces on uneven terrain.



قيم البحث

اقرأ أيضاً

We present a new method for motion planning for control systems. The method aims to provide a natural computational framework in which a broad class of motion planning problems can be cast; including problems with holonomic and non-holonomic constrai nts, drift dynamics, obstacle constraints and constraints on the magnitudes of the applied controls. The method, which finds its inspiration in recent work on the so-called geometric heat flows and curve shortening flows, relies on a hereby introduced partial differential equation, which we call the affine geometric heat flow, which evolves an arbitrary differentiable path joining initial to final state in configuration space to a path that meets the constraints imposed on the problem. From this path, controls to be applied on the system can be extracted. We provide conditions guaranteeing that the controls extracted will drive the system arbitrarily close to the desired final state, while meeting the imposed constraints and illustrate the method on three canonical examples.
We propose a novel method for motion planning and illustrate its implementation on several canonical examples. The core novel idea underlying the method is to define a metric for which a path of minimal length is an admissible path, that is path that respects the various constraints imposed by the environment and the physics of the system on its dynamics. To be more precise, our method takes as input a control system with holonomic and non-holonomic constraints, an initial and final point in configuration space, a description of obstacles to avoid, and an initial trajectory for the system, called a sketch. This initial trajectory does not need to meet the constraints, except for the obstacle avoidance constraints. The constraints are then encoded in an inner product, which is used to deform (via a homotopy) the initial sketch into an admissible trajectory from which controls realizing the transfer can be obtained. We illustrate the method on various examples, including vehicle motion with obstacles and a two-link manipulator problem.
Hierarchical learning has been successful at learning generalizable locomotion skills on walking robots in a sample-efficient manner. However, the low-dimensional latent action used to communicate between two layers of the hierarchy is typically user -designed. In this work, we present a fully-learned hierarchical framework, that is capable of jointly learning the low-level controller and the high-level latent action space. Once this latent space is learned, we plan over continuous latent actions in a model-predictive control fashion, using a learned high-level dynamics model. This framework generalizes to multiple robots, and we present results on a Daisy hexapod simulation, A1 quadruped simulation, and Daisy robot hardware. We compare a range of learned hierarchical approaches from literature, and show that our framework outperforms baselines on multiple tasks and two simulations. In addition to learning approaches, we also compare to inverse-kinematics (IK) acting on desired robot motion, and show that our fully-learned framework outperforms IK in adverse settings on both A1 and Daisy simulations. On hardware, we show the Daisy hexapod achieve multiple locomotion tasks, in an unstructured outdoor setting, with only 2000 hardware samples, reinforcing the robustness and sample-efficiency of our approach.
In this paper, we present an efficient Dynamic Programing framework for optimal planning and control of legged robots. First we formulate this problem as an optimal control problem for switched systems. Then we propose a multi--level optimization app roach to find the optimal switching times and the optimal continuous control inputs. Through this scheme, the decomposed optimization can potentially be done more efficiently than the combined approach. Finally, we present a continuous-time constrained LQR algorithm which simultaneously optimizes the feedforward and feedback controller with $O(n)$ time-complexity. In order to validate our approach, we show the performance of our framework on a quadrupedal robot. We choose the Center of Mass dynamics and the full kinematic formulation as the switched system model where the switching times as well as the contact forces and the joint velocities are optimized for different locomotion tasks such as gap crossing, walking and trotting.
Traditional motion planning approaches for multi-legged locomotion divide the problem into several stages, such as contact search and trajectory generation. However, reasoning about contacts and motions simultaneously is crucial for the generation of complex whole-body behaviors. Currently, coupling theses problems has required either the assumption of a fixed gait sequence and flat terrain condition, or non-convex optimization with intractable computation time. In this paper, we propose a mixed-integer convex formulation to plan simultaneously contact locations, gait transitions and motion, in a computationally efficient fashion. In contrast to previous works, our approach is not limited to flat terrain nor to a pre-specified gait sequence. Instead, we incorporate the friction cone stability margin, approximate the robots torque limits, and plan the gait using mixed-integer convex constraints. We experimentally validated our approach on the HyQ robot by traversing different challenging terrains, where non-convexity and flat terrain assumptions might lead to sub-optimal or unstable plans. Our method increases the motion generality while keeping a low computation time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا