ﻻ يوجد ملخص باللغة العربية
Combining adaptive optics and interferometric observations results in a considerable contrast gain compared to single-telescope, extreme AO systems. Taking advantage of this, the ExoGRAVITY project is a survey of known young giant exoplanets located in the range of 0.1 to 2 from their stars. The observations provide astrometric data of unprecedented accuracy, being crucial for refining the orbital parameters of planets and illuminating their dynamical histories. Furthermore, GRAVITY will measure non-Keplerian perturbations due to planet-planet interactions in multi-planet systems and measure dynamical masses. Over time, repetitive observations of the exoplanets at medium resolution ($R=500$) will provide a catalogue of K-band spectra of unprecedented quality, for a number of exoplanets. The K-band has the unique properties that it contains many molecular signatures (CO, H$_2$O, CH$_4$, CO$_2$). This allows constraining precisely surface gravity, metallicity, and temperature, if used in conjunction with self-consistent models like Exo-REM. Further, we will use the parameter-retrieval algorithm petitRADTRANS to constrain the C/O ratio of the planets. Ultimately, we plan to produce the first C/O survey of exoplanets, kick-starting the difficult process of linking planetary formation with measured atomic abundances.
Young giant exoplanets emit infrared radiation that can be linearly polarized up to several percent. This linear polarization can trace: 1) the presence of atmospheric cloud and haze layers, 2) spatial structure, e.g. cloud bands and rotational flatt
We present the 3.5m SPICA space telescope, a proposed Japanese-led JAXA-ESA mission scheduled for launch around 2017. The actively cooled (<5 K), single aperture telescope and monolithic mirror will operate from ~3.5 to ~210 um and will provide super
High-dispersion coronagraphy (HDC) optimally combines high contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway towards fully characterizing exopla
We investigate directly imaging exoplanets around eclipsing binaries, using the eclipse as a natural tool for dimming the binary and thus increasing the planet to star brightness contrast. At eclipse, the binary becomes point-like, making coronagraph
To date more than 3500 exoplanets have been discovered orbiting a large variety of stars. Due to the sensitivity limits of the currently used detection techniques, these planets populate zones restricted either to the solar neighbourhood or towards t