ترغب بنشر مسار تعليمي؟ اضغط هنا

The accuracy of signal measurement with the water-Cherenkov detectors of the Pierre Auger Observatory

97   0   0.0 ( 0 )
 نشر من قبل Carola Dobrigkeit
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Auger Surface Detector consists of a large array of water Cherenkov detector tanks each with a volume of 12,000 liters, for the detection of high energy cosmic rays. The accuracy in the measurement of the integrated signal amplitude of the detector unit has been studied using experimental air shower data. It can be described as a Poisson-like term with a normalization constant that depends on the zenith angle of the primary cosmic ray. This dependence reflects the increasing contribution to the signal of the muonic component of the shower, both due to the increasing muon/electromagnetic (e+- and gamma) ratio and muon track length with zenith angle.

قيم البحث

اقرأ أيضاً

Muons decaying in the water volume of a Cherenkov detector of the Pierre Auger Observatory provide a useful calibration point at low energy. Using the digitized waveform continuously recorded by the electronics of each tank, we have devised a simple method to extract the charge spectrum of the Michel electrons, whose typical signal is about 1/8 of a crossing vertical muon. This procedure, moreover, allows continuous monitoring of the detector operation and of its water level. We have checked the procedure with high statistics on a test tank at the Observatory base and applied with success on the whole array.
The atmospheric depth of the air shower maximum $X_{mathrm{max}}$ is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of $X_{mathrm{max}}$ are performed using obse rvations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of $X_{mathrm{max}}$ from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of $X_{mathrm{max}}$. The reconstruction relies on the signals induced by shower particles in the ground based water-Cherenkov detectors of the Pierre Auger Observatory. The network architecture features recurrent long short-term memory layers to process the temporal structure of signals and hexagonal convolutions to exploit the symmetry of the surface detector array. We evaluate the performance of the network using air showers simulated with three different hadronic interaction models. Thereafter, we account for long-term detector effects and calibrate the reconstructed $X_{mathrm{max}}$ using fluorescence measurements. Finally, we show that the event-by-event resolution in the reconstruction of the shower maximum improves with increasing shower energy and reaches less than $25~mathrm{g/cm^{2}}$ at energies above $2times 10^{19}~mathrm{eV}$.
The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atm osphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.
The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the worlds largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to stu dy the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا