ﻻ يوجد ملخص باللغة العربية
SPIDERS is the spectroscopic follow-up effort of the Sloan Digital Sky Survey IV (SDSS-IV) project for the identification of X-ray selected galaxy clusters. We present our catalogue of 2740 visually inspected galaxy clusters as a part of the SDSS Data Release 16 (DR16). Here we detail the target selection, our methods for validation of the candidate clusters, performance of the survey, the construction of the final sample, and a full description of what is found in the catalogue. Of the sample, the median number of members per cluster is approximately 10, with 818 having 15 or greater. We find that we are capable of validating over 99% of clusters when 5 redshifts are obtained below $z<0.3$ and when 9 redshifts are obtained above $z>0.3$. We discuss the improvements of this catalogues identification of cluster using 33,340 redshifts, with $Delta z_{rm{phot}} / Delta z_{rm{spec}} sim 100$, over other photometric and spectroscopic surveys, as well as present an update to previous ($sigma - L_{X}$) and ($sigma - lambda$) relations. Finally, we present our cosmological constraints derived using the velocity dispersion function.
SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a large spectroscopic programme for X-ray selected galaxy clusters as part of the Sloan Digital Sky Survey-IV (SDSS-IV). We describe the final dataset in the context of SDSS Data Releas
SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a program dedicated to the homogeneous and complete spectroscopic follow-up of X-ray AGN and galaxy clusters over a large area ($sim$7500 deg$^2$) of the extragalactic sky. SPIDERS is p
We look to provide a detailed description of the SPectroscopic IDentification of ERosita Sources (SPIDERS) survey, an SDSS-IV programme aimed at obtaining spectroscopic classification and redshift measurements for complete samples of sufficiently bri
Cosmological probes based on galaxy clusters rely on cluster number counts and large-scale structure information. X-ray cluster surveys are well suited for this purpose, since they are far less affected than optical surveys by projection effects, and
We explore the scaling relation between the flux of the Sunyaev-Zeldovich (SZ) effect and the total mass of galaxy clusters using already reduced Chandra X-ray data present in the ACCEPT (Archive of Chandra Cluster Entropy Profile Tables) catalogue.