ترغب بنشر مسار تعليمي؟ اضغط هنا

SPIDERS: An Overview of The Largest Catalogue of Spectroscopically Confirmed X-ray Galaxy Clusters

124   0   0.0 ( 0 )
 نشر من قبل Charles Kirkpatrick
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SPIDERS is the spectroscopic follow-up effort of the Sloan Digital Sky Survey IV (SDSS-IV) project for the identification of X-ray selected galaxy clusters. We present our catalogue of 2740 visually inspected galaxy clusters as a part of the SDSS Data Release 16 (DR16). Here we detail the target selection, our methods for validation of the candidate clusters, performance of the survey, the construction of the final sample, and a full description of what is found in the catalogue. Of the sample, the median number of members per cluster is approximately 10, with 818 having 15 or greater. We find that we are capable of validating over 99% of clusters when 5 redshifts are obtained below $z<0.3$ and when 9 redshifts are obtained above $z>0.3$. We discuss the improvements of this catalogues identification of cluster using 33,340 redshifts, with $Delta z_{rm{phot}} / Delta z_{rm{spec}} sim 100$, over other photometric and spectroscopic surveys, as well as present an update to previous ($sigma - L_{X}$) and ($sigma - lambda$) relations. Finally, we present our cosmological constraints derived using the velocity dispersion function.

قيم البحث

اقرأ أيضاً

SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a large spectroscopic programme for X-ray selected galaxy clusters as part of the Sloan Digital Sky Survey-IV (SDSS-IV). We describe the final dataset in the context of SDSS Data Releas e 16 (DR16): the survey overall characteristics, final targeting strategies, achieved completeness and spectral quality, with special emphasis on its use as a galaxy cluster sample for cosmology applications. SPIDERS now consists of about 27,000 new optical spectra of galaxies selected within 4,000 photometric red sequences, each associated with an X-ray source. The excellent spectrograph efficiency and a robust analysis pipeline yield a spectroscopic redshift measurement success rate exceeding 98%, with a median velocity accuracy of 20 km s$^{-1}$ (at $z=0.2$). Using the catalogue of 2,740 X-ray galaxy clusters confirmed with DR16 spectroscopy, we reveal the three-dimensional map of the galaxy cluster distribution in the observable Universe up to $zsim0.6$. We highlight the homogeneity of the member galaxy spectra among distinct regions of the galaxy cluster phase space. Aided by accurate spectroscopic redshifts and by a model of the sample selection effects, we compute the galaxy cluster X-ray luminosity function and we present its lack of evolution up to $z=0.6$. Finally we discuss the prospects of forthcoming large multiplexed spectroscopic programmes dedicated to follow up the next generation of all-sky X-ray source catalogues.
SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a program dedicated to the homogeneous and complete spectroscopic follow-up of X-ray AGN and galaxy clusters over a large area ($sim$7500 deg$^2$) of the extragalactic sky. SPIDERS is p art of the SDSS-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) and the Time-Domain Spectroscopic Survey (TDSS). This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray selected, massive ($sim 10^{14}$ to $10^{15}~M_{odot}$) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise ($Delta_z sim 0.001$) redshifts for 4,000-5,000 of these systems out to $z sim 0.6$. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters ($0.031 < z < 0.658$), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion ($L_X-sigma$) relation and the building of stacked phase-space diagrams.
We look to provide a detailed description of the SPectroscopic IDentification of ERosita Sources (SPIDERS) survey, an SDSS-IV programme aimed at obtaining spectroscopic classification and redshift measurements for complete samples of sufficiently bri ght X-ray sources. We describe the SPIDERS X-ray Point Source Spectroscopic Catalogue, considering its store of 11,092 observed spectra drawn from a parent sample of 14,759 ROSAT and XMM sources over an area of 5,129 deg$^2$ covered in SDSS-IV by the eBOSS survey. This programme represents the largest systematic spectroscopic observation of an X-ray selected sample. A total of 10,970 (98.9%) of the observed objects are classified and 10,849 (97.8%) have secure redshifts. The majority of the spectra (10,070 objects) are active galactic nuclei (AGN), 522 are cluster galaxies, and 294 are stars. The observed AGN redshift distribution is in good agreement with simulations based on empirical models for AGN activation and duty cycle. Forming composite spectra of type 1 AGN as a function of the mass and accretion rate of their black holes reveals systematic differences in the H-beta emission line profiles. This study paves the way for systematic spectroscopic observations of sources that are potentially to be discovered in the upcoming eROSITA survey over a large section of the sky.
Cosmological probes based on galaxy clusters rely on cluster number counts and large-scale structure information. X-ray cluster surveys are well suited for this purpose, since they are far less affected than optical surveys by projection effects, and cluster properties can be predicted with good accuracy. The XMM Cluster Archive Super Survey, X-CLASS, is a serendipitous search of X-ray-detected galaxy clusters in 4176 XMM-Newton archival observations until August 2015. All observations are clipped to exposure times of 10 and 20 ks to obtain uniformity and they span ~269 deg$^2$ across the high-Galactic latitude sky ($|b|> 20^o$). The main goal of the survey is the compilation of a well-selected cluster sample suitable for cosmological analyses. We describe the detection algorithm, the visual inspection, the verification process and the redshift validation of the cluster sample, as well as the cluster selection function computed by simulations. We also present the various metadata that are released with the catalogue, along with the redshifts of 124 clusters obtained with a dedicated multi-object spectroscopic follow-up programme. With this publication we release the new X-CLASS catalogue of 1646 well-selected X-ray-detected clusters over a wide sky area, along with their selection function. The sample spans a wide redshift range, from the local Universe up to z~1.5, with 982 spectroscopically confirmed clusters, and over 70 clusters above z=0.8. Because of its homogeneous selection and thorough verification, the cluster sample can be used for cosmological analyses, but also as a test-bed for the upcoming eROSITA observations and other current and future large-area cluster surveys. It is the first time that such a catalogue is made available to the community via an interactive database which gives access to a wealth of supplementary information, images, and data.
102 - B. Comis 2011
We explore the scaling relation between the flux of the Sunyaev-Zeldovich (SZ) effect and the total mass of galaxy clusters using already reduced Chandra X-ray data present in the ACCEPT (Archive of Chandra Cluster Entropy Profile Tables) catalogue. The analysis is conducted over a sample of 226 objects, examining the relatively small scale corresponding to a cluster overdensity equal to 2500 times the critical density of the background universe, at which the total masses have been calculated exploiting the hydrostatic equilibrium hypothesis. Core entropy (K0) is strongly correlated with the central cooling time, and is therefore used to identify cooling-core (CC) objects in our sample. Our results confirm the self-similarity of the scaling relation between the integrated Comptonization parameter (Y) and the cluster mass, for both CC and NCC (non-cooling-core) clusters. The consistency of our calibration with recent ones has been checked, with further support for Y as a good mass proxy. We also investigate the robustness of the constant gas fraction assumption, for fixed overdensity, and of the Yx proxy (Kravstov et al. 2007) considering CC and NCC clusters, again sorted on K0 from our sample. We extend our study to implement a K0-proxy, obtained by combining SZ and X-ray observables, which is proposed to provide a CC indicator for higher redshift objects. Finally, we suggest that an SZ-only CC indicator could benefit from the employment of deprojected Comptonization radial profiles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا