ترغب بنشر مسار تعليمي؟ اضغط هنا

Sobolev mappings and the Rumin complex

67   0   0.0 ( 0 )
 نشر من قبل Bruce Kleiner
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider contact manifolds equipped with Carnot-Caratheodory metrics, and show that the Rumin complex is respected by Sobolev mappings: Pansu pullback induces a chain mapping between the smooth Rumin complex and the distributional Rumin complex. As a consequence, the Rumin flat complex -- the analog of the Whitney flat complex in the setting of contact manifolds -- is bilipschitz invariant. We also show that for Sobolev mappings between general Carnot groups, Pansu pullback induces a chain mapping when restricted to a certain differential ideal of the de Rham complex. Both results are applications of the Pullback Theorem from our previous paper.



قيم البحث

اقرأ أيضاً

94 - Jeffrey S. Case 2021
We give a new CR invariant treatment of the bigraded Rumin complex and related cohomology groups via differential forms. We also prove related Hodge decomposition theorems. Among many applications, we give a sharp upper bound on the dimension of the Kohn--Rossi groups $H^{0,q}(M^{2n+1})$, $1leq qleq n-1$, of a closed strictly pseudoconvex manifold with a contact form of nonnegative pseudohermitian Ricci curvature; we prove a sharp CR analogue of the Frolicher inequalities in terms of the second page of a natural spectral sequence; and we generalize the Lee class $mathcal{L}in H^1(M;mathscr{P})$ -- whose vanishing is necessary and sufficient for the existence of a pseudo-Einstein contact form -- to all nondegenerate orientable CR manifolds.
87 - Francesca Tripaldi 2020
In this paper an alternative definition of the Rumin complex $(E_0^bullet,d_c)$ is presented, one that relies on a different concept of weights of forms. In this way, the Rumin complex can be constructed on any nilpotent Lie group equipped with a Car not-Caratheodory metric. Moreover, this construction allows for the direct application of previous non-vanishing results of $ell^{q,p}$ cohomology to all nilpotent Lie groups that admit a positive grading.
We extend Federers coarea formula to mappings $f$ belonging to the Sobolev class $W^{1,p}(R^n;R^m)$, $1 le m < n$, $p>m$, and more generally, to mappings with gradient in the Lorentz space $L^{m,1}(R^n)$. This is accomplished by showing that the grap h of $f$ in $R^{n+m}$ is a Hausdorff $n$-rectifiable set.
122 - Peter W. Michor 2015
This is an overview article. In his Habilitationsvortrag, Riemann described infinite dimensional manifolds parameterizing functions and shapes of solids. This is taken as an excuse to describe convenient calculus in infinite dimensions which allows for short and transparent proofs of the main facts of the theory of manifolds of smooth mappings. Smooth manifolds of immersions, diffeomorphisms, and shapes, and weak Riemannian metrics on them are treated, culminating in the surprising fact, that geodesic distance can vanish completely for them.
We consider mappings $f:Gsupset Urightarrow G$ where $G$ and $G$ are Carnot groups and U is an open subset. We prove a number of new structural results for Sobolev (in particular quasisymmetric) mappings, establishing (partial) rigidity or (partial) regularity theorems, depending on the context. In particular, we prove the quasisymmetric rigidity conjecture for Carnot groups which are not rigid in the sense of Ottazzi-Warhurst.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا