ترغب بنشر مسار تعليمي؟ اضغط هنا

Hankel determinants of linear combinations of moments of orthogonal polynomials, II

105   0   0.0 ( 0 )
 نشر من قبل Christian Krattenthaler
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a formula that expresses the Hankel determinants of a linear combination of length $d+1$ of moments of orthogonal polynomials in terms of a $dtimes d$ determinant of the orthogonal polynomials. This formula exists somehow hidden in the folklore of the theory of orthogonal polynomials but deserves to be better known, and be presented correctly and with full proof. We present four fundamentally different proofs, one that uses classical formulae from the theory of orthogonal polynomials, one that uses a vanishing argument and is due to Elouafi [J. Math. Anal. Appl. 431} (2015), 1253-1274] (but given in an incomplete form there), one that is inspired by random matrix theory and is due to Brezin and Hikami [Comm. Math. Phys. 214 (2000), 111-135], and one that uses (Dodgson) condensation. We give two applications of the formula. In the first application, we explain how to compute such Hankel determinants in a singular case. The second application concerns the linear recurrence of such Hankel determinants for a certain class of moments that covers numerous classical combinatorial sequences, including Catalan numbers, Motzkin numbers, central binomial coefficients, central trinomial coefficients, central Delannoy numbers, Schroder numbers, Riordan numbers, and Fine numbers.

قيم البحث

اقرأ أيضاً

We prove evaluations of Hankel determinants of linear combinations of moments of orthogonal polynomials (or, equivalently, of generating functions for Motzkin paths), thus generalising known results for Catalan numbers.
270 - C. Krattenthaler 2021
Let $p_n(x)$, $n=0,1,dots$, be the orthogonal polynomials with respect to a given density $dmu(x)$. Furthermore, let $d u(x)$ be a density which arises from $dmu(x)$ by multiplication by a rational function in $x$. We prove a formula that expresses t he Hankel determinants of moments of $d u(x)$ in terms of a determinant involving the orthogonal polynomials $p_n(x)$ and associated functions $q_n(x)=int p_n(u) ,dmu(u)/(x-u)$. Uvarovs formula for the orthogonal polynomials with respect to $d u(x)$ is a corollary of our theorem. Our result generalises a Hankel determinant formula for the case where the rational function is a polynomial that existed somehow hidden in the folklore of the theory of orthogonal polynomials but has been stated explicitly only relatively recently (see [arXiv:2101.04225]). Our theorem can be interpreted in a two-fold way: analytically or in the sense of formal series. We apply our theorem to derive several curious Hankel determinant evaluations.
128 - Ira M. Gessel , Jiang Zeng 2021
Starting from the moment sequences of classical orthogonal polynomials we derive the orthogonality purely algebraically. We consider also the moments of ($q=1$) classical orthogonal polynomials, and study those cases in which the exponential generati ng function has a nice form. In the opposite direction, we show that the generalized Dumont-Foata polynomials with six parameters are the moments of rescaled continuous dual Hahn polynomials.
70 - Peter C. Gibson 2015
We introduce a new family of orthogonal polynomials on the disk that has emerged in the context of wave propagation in layered media. Unlike known examples, the polynomials are orthogonal with respect to a measure all of whose even moments are infinite.
The complex or non-hermitian orthogonal polynomials with analytic weights are ubiquitous in several areas such as approximation theory, random matrix models, theoretical physics and in numerical analysis, to mention a few. Due to the freedom in the c hoice of the integration contour for such polynomials, the location of their zeros is a priori not clear. Nevertheless, numerical experiments, such as those presented in this paper, show that the zeros not simply cluster somewhere on the plane, but persistently choose to align on certain curves, and in a very regular fashion. The problem of the limit zero distribution for the non-hermitian orthogonal polynomials is one of the central aspects of their theory. Several important results in this direction have been obtained, especially in the last 30 years, and describing them is one of the goals of the first parts of this paper. However, the general theory is far from being complete, and many natural questions remain unanswered or have only a partial explanation. Thus, the second motivation of this paper is to discuss some mysterious configurations of zeros of polynomials, defined by an orthogonality condition with respect to a sum of exponential functions on the plane, that appeared as a results of our numerical experiments. In this apparently simple situation the zeros of these orthogonal polynomials may exhibit different behaviors: for some of them we state the rigorous results, while other are presented as conjectures (apparently, within a reach of modern techniques). Finally, there are cases for which it is not yet clear how to explain our numerical results, and where we cannot go beyond an empirical discussion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا