ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of the centrifugal acceleration on period spacings of gravito-inertial modes in intermediate-mass stars

68   0   0.0 ( 0 )
 نشر من قبل Timothy Van Reeth
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kepler and TESS missions delivered high-precision, long-duration photometric time series for hundreds of main-sequence stars with gravito-inertial (g) pulsation modes. This high precision allows us to evaluate increasingly detailed theoretical stellar models. Recent theoretical work extended the traditional approximation of rotation (TAR), a framework to evaluate the effect of the Coriolis acceleration on g-modes, to include the effects of the centrifugal acceleration in the approximation of slightly deformed stars, which so far had mostly been neglected in asteroseismology. This extension of the TAR was conceived by rederiving the TAR in a centrifugally deformed, spheroidal coordinate system. We explore the effect of the centrifugal acceleration on g modes and assess its detectability in space-based photometry. We implement the new framework to calculate the centrifugal deformation of precomputed 1D spherical stellar structure models and compute the corresponding g-mode frequencies, assuming uniform rotation. The framework is evaluated for a grid of stellar structure models covering a relevant parameter space for observed g-mode pulsators. The centrifugal acceleration modifies the effect of the Coriolis acceleration on g modes, narrowing the equatorial band in which they are trapped. Furthermore, the centrifugal acceleration causes the pulsation periods and period spacings of the most common g modes (prograde dipole modes and r modes) to increase with values similar to the observational uncertainties in Kepler and TESS data. The effect of the centrifugal acceleration on g~modes is formally detectable in modern space photometry. Implementation of the new theoretical framework in stellar structure and pulsation codes will allow for more precise asteroseismic modelling of centrifugally deformed stars, to assess its effect on mode excitation, -trapping and -damping.

قيم البحث

اقرأ أيضاً

Context. While rotation has a major impact on stellar structure and evolution, its effects are not well understood. Thanks to high- quality and long timebase photometric observations obtained with recent space missions, we are now able to study stell ar rotation more precisely. Aims. We aim to constrain radial differential rotation profiles in gamma Doradus (gamma Dor) stars, and to develop new theoretical seismic diagnosis for such stars with rapid and potentially non-uniform rotation. Methods. We derive a new asymptotic description which accounts for the impact of weak differential near-core rotation on gravity- mode period spacings. The theoretical predictions are illustrated from pulsation computations with the code GYRE and compared with observations of gamma Dor stars. When possible, we also derive the surface rotation rates in these stars by detecting and analysing signatures of rotational modulation, and compute the core-to-surface rotation ratios. Results. Stellar rotation has to be strongly differential before its effects on period spacing patterns can be detected, unless multiple period spacing patterns can be compared. Six stars in our sample exhibit a single unexplained period spacing pattern of retrograde modes. We hypothesise that these are Yanai modes. Finally, we find signatures of rotational spot modulation in the photometric data of eight targets. Conclusions. If only one period spacing pattern is detected and analysed for a star, it is difficult to detect differential rotation. A rigidly rotating model will often provide the best solution. Differential rotation can only be detected when multiple period spacing patterns have been found for a single star or its surface rotation rate is known as well. This is the case for eight stars in our sample, revealing surface-to-core rotation ratios between 0.95 and 1.05.
The relation of period spacing ($Delta P$) versus period ($P$) of dipole prograde g modes is known to be useful to measure rotation rates in the g-mode cavity of rapidly rotating $gamma$ Dor and slowly pulsating B (SPB) stars. In a rapidly rotating s tar, an inertial mode in the convective core can resonantly couple with g modes propagative in the surrounding radiative region. The resonant coupling causes a dip in the $P$-$Delta P$ relation, distinct from the modulations due to the chemical composition gradient. Such a resonance dip in $Delta P$ of prograde dipole g modes appears around a frequency corresponding to a spin parameter $2f_{rm rot}{rm(cc)}/ u_{rm co-rot} sim 8-11$ with $f_{rm rot}$(cc) being the rotation frequency of the convective core and $ u_{rm co-rot}$ the pulsation frequency in the co-rotating frame. The spin parameter at the resonance depends somewhat on the extent of core overshooting, central hydrogen abundance, and other stellar parameters. We can fit the period at the observed dip with the prediction from prograde dipole g modes of a main-sequence model, allowing the convective core to rotate differentially from the surrounding g-mode cavity. We have performed such fittings for 16 selected $gamma$ Dor stars having well defined dips, and found that the majority of $gamma$ Dor stars we studied rotate nearly uniformly, while convective cores tend to rotate slightly faster than the g-mode cavity in less evolved stars.
Aims: We investigate the thermal and chemical structure in the near-core region of stars with a convective core by means of gravito-inertial modes. We do so by determining the probing power of different asteroseismic observables and fitting methodolo gies. We focus on the case of the B-type star KIC$,$7760680, rotating at a quarter of its critical rotation velocity. Methods: We compute grids of 1D stellar structure and evolution models for two different prescriptions of the temperature gradient and mixing profile in the near-core region. We determine which of these prescriptions is preferred according to the prograde dipole modes detected in 4-yr $textit{Kepler}$ photometry of KIC$,$7760680. We consider different sets of asteroseismic observables and compare the outcomes of the regression problem for a $chi^2$ and Mahalanobis Distance merit function, where the latter takes into account realistic uncertainties for the theoretical predictions and the former does not. Results: Period spacings of modes with consecutive radial order offer a better diagnostic than mode periods or mode frequencies for asteroseismic modelling of stars revealing only high-order gravito-inertial modes. We find KIC$,$7760680 to reveal a radiative temperature gradient in models with convective boundary mixing, but less complex models without such mixing are statistically preferred for this rotating star, revealing extremely low vertical envelope mixing. Conclusions: Our results strongly suggest the use of measured individual period spacing values for modes of consecutive radial order as an asteroseismic diagnostic for stellar modelling of B-type pulsators with gravito-inertial modes.
Oscillations have been detected in a variety of stars, including intermediate- and high-mass main sequence stars. While many of these stars are rapidly and differentially rotating, the effects of rotation on oscillation modes are poorly known. In thi s communication we present a first study on axisymmetric gravito-inertial modes in the radiative zone of a differentially rotating star. These modes probe the deep layers of the star around its convective core. We consider a simplified model where the radiative zone of a star is a linearly stratified rotating fluid within a spherical shell, with differential rotation due to baroclinic effects. We solve the eigenvalue problem with high-resolution spectral simulations and determine the propagation domain of the waves through the theory of characteristics. We explore the propagation properties of two kinds of modes: those that can propagate in the entire shell and those that are restricted to a subdomain. Some of the modes that we find concentrate kinetic energy around short-period shear layers known as attractors. We characterise these attractors by the dependence of their Lyapunov exponent with the BV frequency of the background and the oscillation frequency of the mode. Finally, we note that, as modes associated with short-period attractors form dissipative structures, they could play an important role for tidal interactions but should be dismissed in the interpretation of observed oscillation frequencies.
While many intermediate- and high-mass main sequence stars are rapidly and differentially rotating, the effects of rotation on oscillation modes are poorly known. In this communication we present a first study of axisymmetric gravito-inertial modes i n the radiative zone of a differentially rotating star. We consider a simplified model where the radiative zone of the star is a linearly stratified rotating fluid within a spherical shell, with differential rotation due to baroclinic effects. We solve the eigenvalue problem with high-resolution spectral computations and determine the propagation domain of the waves through the theory of characteristics. We explore the propagation properties of two kinds of modes: those that can propagate in the entire shell and those that are restricted to a subdomain. Some of the modes that we find concentrate kinetic energy around short-period shear layers known as attractors. We describe various geometries for the propagation domains, conditioning the surface visibility of the corresponding modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا