ﻻ يوجد ملخص باللغة العربية
We present an extensive comparison between the statistical properties of non-hierarchical three-body systems and the corresponding three-body theoretical predictions. We perform and analyze 1 million realizations for each different initial condition considering equal and unequal mass three-body systems to provide high accuracy statistics. We measure 4 quantities characterizing the statistical distribution of ergodic disintegrations: escape probability of each body, the characteristic exponent for escapes by a narrow margin, predicted absorptivity as a function of binary energy and binary angular momentum, and, finally, the lifetime distribution. The escape probabilities are shown to be in agreement down to the 1% level with the emissivity-blind, flux-based theoretical prediction. This represents a leap in accuracy compared to previous three-body statistical theories. The characteristic exponent at the threshold for marginally unbound escapes is an emissivity-independent flux-based prediction, and the measured values are found to agree well with the prediction. We interpret both tests as strong evidence for the flux-based three-body statistical formalism. The predicted absorptivity and lifetime distributions are measured to enable future tests of statistical theories.
The gravitational three-body problem is a rich open problem, dating back to Newton. It serves as a prototypical example of a chaotic system and has numerous applications in astrophysics. Generically, the motion is non-integrable and susceptible to di
We study the dynamical chaos and integrable motion in the planar circular restricted three-body problem and determine the fractal dimension of the spiral strange repeller set of non-escaping orbits at different values of mass ratio of binary bodies a
The three-body problem is a fundamental long-standing open problem, with applications in all branches of physics, including astrophysics, nuclear physics and particle physics. In general, conserved quantities allow to reduce the formulation of a mech
We study the influence of relativity on the chaotic properties and dynamical outcomes of an unstable triple system; the Pythagorean three-body problem. To this end, we extend the Brutus N-body code to include Post-Newtonian pairwise terms up to 2.5 o
We study chaos and Levy flights in the general gravitational three-body problem. We introduce new metrics to characterize the time evolution and final lifetime distributions, namely Scramble Density $mathcal{S}$ and the LF index $mathcal{L}$, that ar