ﻻ يوجد ملخص باللغة العربية
We discuss dynamics of massive Klein-Gordon fields in two-dimensional Anti-de Sitter spacetimes ($AdS_2$), in particular conserved quantities and non-modal instability on the future Poincare horizon called, respectively, the Aretakis constants and the Aretakis instability. We find out the geometrical meaning of the Aretakis constants and instability in a parallel-transported frame along a null geodesic, i.e., some components of the higher-order covariant derivatives of the field in the parallel-transported frame are constant or unbounded at the late time, respectively. Because $AdS_2$ is maximally symmetric, any null hypersurfaces have the same geometrical properties. Thus, if we prepare parallel-transported frames along any null hypersurfaces, we can show that the same instability emerges not only on the future Poincare horizon but also on any null hypersurfaces. This implies that the Aretakis instability in $AdS_2$ is the result of singular behaviors of the higher-order covariant derivatives of the fields on the whole $AdS$ infinity, rather than a blow-up on a specific null hypersurface. It is also discussed that the Aretakis constants and instability are related to the conformal Killing tensors. We further explicitly demonstrate that the Aretakis constants can be derived from ladder operators constructed from the spacetime conformal symmetry.
We study the dynamics of a spherically symmetric thin shell of perfect fluid embedded in d-dimensional Anti-de Sitter space-time. In global coordinates, besides collapsing solutions, oscillating solutions are found where the shell bounces back and fo
We provide a prescription to compute the gravitational multipole moments of compact objects for asymptotically de Sitter spacetimes. Our prescription builds upon a recent definition of the gravitational multipole moments in terms of Noether charges a
Suppose a one-dimensional isometry group acts on a space, we can consider a submergion induced by the isometry, namely we obtain an orbit space by identification of points on the orbit of the group action. We study the causal structure of the orbit s
We study the fully nonlinear dynamics of black hole spontaneous scalarizations in Einstein-Maxwell scalar theory with coupling function $f(phi)=e^{-bphi^{2}}$, which can transform usual Reissner-Nordstrom Anti-de Sitter (RN-AdS) black holes into hair
Understanding black hole microstructure via the thermodynamic geometry can provide us with more deeper insight into black hole thermodynamics in modified gravities. In this paper, we study the black hole phase transition and Ruppeiner geometry for th