ﻻ يوجد ملخص باللغة العربية
We explore upper limits for the largest avalanches or catastrophes in nonlinear energy dissipation systems governed by self-organized criticality (SOC). We generalize the idealized straight power low size distribution and Pareto distribution functions in order to accomodate for incomplete sampling, limited instrumental sensitivity, finite system-size effects, Black-Swan and Dragon-King extreme events. Our findings are: (i) Solar flares show no finite system-size limits up to L < 200 Mm, but solar flare durations reveal an upper flare duration limit of < 6 hrs; (ii) Stellar flares observed with KEPLER exhibit inertial ranges of $E approx 10^{34}-10^{37}$ erg, finite system-size ranges at $E approx 10^{37}-10^{38}$ erg, and extreme events at $E =(1-5) times 10^{38}$ erg; (iii) The maximum flare energy of different spectral-type stars (M, K, G, F, A, Giants) reveal a positive correlation with the stellar radius, which indicates a finite system-size limit imposed by the stellar surface area. Fitting our finite system-size models to terrestrial data sets (Earth quakes, wildfires, city sizes, blackouts, terrorism, words, surnames, web-links) yields evidence (in half of the cases) for finite system-size limits and extreme events, which can be modeled with dual power law size distributions.
Power law size distributions are the hallmarks of nonlinear energy dissipation processes governed by self-organized criticality. Here we analyze 75 data sets of stellar flare size distributions, mostly obtained from the {sl Extreme Ultra-Violet Explo
This paper studies a stylized model of local interaction where agents choose from an ever increasing set of vertically ranked actions, e.g. technologies. The driving forces of the model are infrequent upward shifts (``updates), followed by a rapid pr
The original concept of self-organized criticality (Bak et al.~1987), applied to solar flare statistics (Lu and Hamilton 1991), assumed a slow-driven and stationary flaring rate, which warrants time scale separation (between flare durations and inter
Self-organized criticality (SOC) refers to the ability of complex systems to evolve towards a 2nd-order phase transition at which interactions between system components lead to scale-invariant events beneficial for system performance. For the last tw
The shape of clouds has proven to be essential for classifying them. Our analysis of images from fair weather cumulus clouds reveals that, besides by turbulence they are driven by self-organized criticality (SOC). Our observations yield exponents tha