ترغب بنشر مسار تعليمي؟ اضغط هنا

More Reliable AI Solution: Breast Ultrasound Diagnosis Using Multi-AI Combination

119   0   0.0 ( 0 )
 نشر من قبل Jian Dai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Objective: Breast cancer screening is of great significance in contemporary womens health prevention. The existing machines embedded in the AI system do not reach the accuracy that clinicians hope. How to make intelligent systems more reliable is a common problem. Methods: 1) Ultrasound image super-resolution: the SRGAN super-resolution network reduces the unclearness of ultrasound images caused by the device itself and improves the accuracy and generalization of the detection model. 2) In response to the needs of medical images, we have improved the YOLOv4 and the CenterNet models. 3) Multi-AI model: based on the respective advantages of different AI models, we employ two AI models to determine clinical resuls cross validation. And we accept the same results and refuses others. Results: 1) With the help of the super-resolution model, the YOLOv4 model and the CenterNet model both increased the mAP score by 9.6% and 13.8%. 2) Two methods for transforming the target model into a classification model are proposed. And the unified output is in a specified format to facilitate the call of the molti-AI model. 3) In the classification evaluation experiment, concatenated by the YOLOv4 model (sensitivity 57.73%, specificity 90.08%) and the CenterNet model (sensitivity 62.64%, specificity 92.54%), the multi-AI model will refuse to make judgments on 23.55% of the input data. Correspondingly, the performance has been greatly improved to 95.91% for the sensitivity and 96.02% for the specificity. Conclusion: Our work makes the AI model more reliable in medical image diagnosis. Significance: 1) The proposed method makes the target detection model more suitable for diagnosing breast ultrasound images. 2) It provides a new idea for artificial intelligence in medical diagnosis, which can more conveniently introduce target detection models from other fields to serve medical lesion screening.



قيم البحث

اقرأ أيضاً

194 - Yingni Wang , Shuge Lei , Jian Dai 2021
The implementation of medical AI has always been a problem. The effect of traditional perceptual AI algorithm in medical image processing needs to be improved. Here we propose a method of knowledge AI, which is a combination of perceptual AI and clin ical knowledge and experience. Based on this method, the geometric information mining of medical images can represent the experience and information and evaluate the quality of medical images.
Multi working-machines pathfinding solution enables more mobile machines simultaneously to work inside of a working site so that the productivity can be expected to increase evolutionary. To date, the potential cooperation conflicts among constructio n machinery limit the amount of construction machinery investment in a concrete working site. To solve the cooperation problem, civil engineers optimize the working site from a logistic perspective while computer scientists improve pathfinding algorithms performance on the given benchmark maps. In the practical implementation of a construction site, it is sensible to solve the problem with a hybrid solution; therefore, in our study, we proposed an algorithm based on a cutting-edge multi-pathfinding algorithm to enable the massive number of machines cooperation and offer the advice to modify the unreasonable part of the working site in the meantime. Using the logistic information from BIM, such as unloading and loading point, we added a pathfinding solution for multi machines to improve the whole construction fleets productivity. In the previous study, the experiments were limited to no more than ten participants, and the computational time to gather the solution was not given; thus, we publish our pseudo-code, our tested map, and benchmark our results. Our algorithms most extensive feature is that it can quickly replan the path to overcome the emergency on a construction site.
Ultrasound is a non-invasive imaging modality that can be conveniently used to classify suspicious breast nodules and potentially detect the onset of breast cancer. Recently, Convolutional Neural Networks (CNN) techniques have shown promising results in classifying ultrasound images of the breast into benign or malignant. However, CNN inference acts as a black-box model, and as such, its decision-making is not interpretable. Therefore, increasing effort has been dedicated to explaining this process, most notably through GRAD-CAM and other techniques that provide visual explanations into inner workings of CNNs. In addition to interpretation, these methods provide clinically important information, such as identifying the location for biopsy or treatment. In this work, we analyze how adversarial assaults that are practically undetectable may be devised to alter these importance maps dramatically. Furthermore, we will show that this change in the importance maps can come with or without altering the classification result, rendering them even harder to detect. As such, care must be taken when using these importance maps to shed light on the inner workings of deep learning. Finally, we utilize Multi-Task Learning (MTL) and propose a new network based on ResNet-50 to improve the classification accuracies. Our sensitivity and specificity is comparable to the state of the art results.
Multi-instance multi-label (MIML) learning is a challenging problem in many aspects. Such learning approaches might be useful for many medical diagnosis applications including breast cancer detection and classification. In this study subset of digiPA TH dataset (whole slide digital breast cancer histopathology images) are used for training and evaluation of six state-of-the-art MIML methods. At the end, performance comparison of these approaches are given by means of effective evaluation metrics. It is shown that MIML-kNN achieve the best performance that is %65.3 average precision, where most of other methods attain acceptable results as well.
With an aging and growing population, the number of women requiring either screening or symptomatic mammograms is increasing. To reduce the number of mammograms that need to be read by a radiologist while keeping the diagnostic accuracy the same or b etter than current clinical practice, we develop Man and Machine Mammography Oracle (MAMMO) - a clinical decision support system capable of triaging mammograms into those that can be confidently classified by a machine and those that cannot be, thus requiring the reading of a radiologist. The first component of MAMMO is a novel multi-view convolutional neural network (CNN) with multi-task learning (MTL). MTL enables the CNN to learn the radiological assessments known to be associated with cancer, such as breast density, conspicuity, suspicion, etc., in addition to learning the primary task of cancer diagnosis. We show that MTL has two advantages: 1) learning refined feature representations associated with cancer improves the classification performance of the diagnosis task and 2) issuing radiological assessments provides an additional layer of model interpretability that a radiologist can use to debug and scrutinize the diagnoses provided by the CNN. The second component of MAMMO is a triage network, which takes as input the radiological assessment and diagnostic predictions of the first networks MTL outputs and determines which mammograms can be correctly and confidently diagnosed by the CNN and which mammograms cannot, thus needing to be read by a radiologist. Results obtained on a private dataset of 8,162 patients show that MAMMO reduced the number of radiologist readings by 42.8% while improving the overall diagnostic accuracy in comparison to readings done by radiologists alone. We analyze the triage of patients decided by MAMMO to gain a better understanding of what unique mammogram characteristics require radiologists expertise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا