ﻻ يوجد ملخص باللغة العربية
We propose to use ultra-high intensity laser pulses with wavefront rotation (WFR) to produce short, ultra-intense surface plasma waves (SPW) on grating targets for electron acceleration. Combining a smart grating design with optimal WFR conditions identified through simple analytical modeling and particle-in-cell simulation allows to decrease the SPW duration (down to few optical cycles) and increase its peak amplitude. In the relativistic regime, for $Ilambda_0^2=3.4 times 10^{19}{rm W/cm^2mu m^2}$, such SPW are found to accelerate high-charge (few 10s of pC), high-energy (up to 70 MeV) and ultra-short (few fs) electron bunches.
A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser,
The generation of relativistic attosecond electron bunches is observed in three-dimensional, relativistic particle-in-cell simulations of the interaction of intense laser light with droplets. The electron bunches are emitted under certain angles whic
We consider nonlinear interaction of superpower laser pulses of relativistic intensities with nanolayers and solid-plasma-targets towards the production of high energy-density electron bunches along with nuclear radiation (hard $% gamma $-quanta and
Dynamics of self-injected electron bunches has been numerically simulated in blowout regime at self-consistent change of electron bunch acceleration by plasma wakefield, excited by a laser pulse, to additional their acceleration by wakefield, excited
We propose a new approach to high-intensity laser-driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward-scattering of an incident laser pulse can be in a longest acceleration phase with an