ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi-band map of the natural night sky brightness including Gaia and Hipparcos integrated starlight

43   0   0.0 ( 0 )
 نشر من قبل Eduard Masana
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The natural night sky brightness is a relevant input for monitoring the light pollution evolution at observatory sites, by subtracting it from the overall sky brightness determined by direct measurements. It is also instrumental for assessing the expected darkness of the pristine night skies. The natural brightness of the night sky is determined by the sum of the spectral radiances coming from astrophysical sources, including zodiacal light, and the atmospheric airglow. The resulting radiance is modified by absorption and scattering before it reaches the observer. Therefore, the natural night sky brightness is a function of the location, time and atmospheric conditions. We present in this work GAMBONS (GAia Map of the Brightness Of the Natural Sky), a model to map the natural night brightness of the sky in cloudless and moonless nights. Unlike previous maps, GAMBONS is based on the extra-atmospheric star radiance obtained from the Gaia catalogue. The Gaia-DR2 archive compiles astrometric and photometric information for more than 1.6 billion stars up to G = 21 magnitude. For the brightest stars, not included in Gaia-DR2, we have used the Hipparcos catalogue instead. After adding up to the star radiance the contributions of the diffuse galactic and extragalactic light, zodiacal light and airglow, and taking into account the effects of atmospheric attenuation and scattering, the radiance detected by ground-based observers can be estimated. This methodology can be applied to any photometric band, if appropriate transformations from the Gaia bands are available. In particular, we present the expected sky brightness for V (Johnson), and visual photopic and scotopic passbands.



قيم البحث

اقرأ أيضاً

In 2018, Solar Cycle 24 entered into a solar minimum phase. During this period, 11 million zenithal night sky brightness (NSB) data were collected at different dark sites around the planet, including astronomical observatories and natural protected a reas, with identical broadband Telescope Encoder and Sky Sensor photometers (based on the Unihedron Sky Quality Meter TSL237 sensor). A detailed observational review of the multiple effects that contribute to the NSB measurement has been conducted with optimal filters designed to avoid brightening effects by the Sun, the Moon, clouds, and other astronomical sources (the Galaxy and zodiacal light). The natural NSB has been calculated from the percentiles for 44 different photometers by applying these new filters. The pristine night sky was measured to change with an amplitude of 0.1 mag/arcsec$^2$ in all the photometers, which is suggested to be due to NSB variations on scales of up to months and to be compatible with semiannual oscillations. We report the systematic observation of short-time variations in NSB on the vast majority of the nights and find these to be related to airglow events forming above the mesosphere.
The photometric sky quality of Mt. Shatdzhatmaz, the site of Sternberg Astronomical Institute Caucasian Observatory 2.5 m telescope, is characterized here by the statistics of the night-time sky brightness and extinction. The data were obtained as a by-product of atmospheric optical turbulence measurements with the MASS (Multi-Aperture Scintillation Sensor) device conducted in 2007--2013. The factors biasing night-sky brightness measurements are considered and a technique to reduce their impact on the statistics is proposed. The single-band photometric estimations provided by MASS are easy to transform to the standard photometric bands. The median moonless night-sky brightness is 22.1, 21.1, 20.3, and 19.0 mag per square arcsec for the $B$, $V$, $R$, and $I$ spectral bands, respectively. The median extinction coefficients for the same photometric bands are 0.28, 0.17, 0.13, and 0.09 mag. The best atmospheric transparency is observed in winter.
This paper presents optical night sky brightness measurements from the stratosphere using CCD images taken with the Super-pressure Balloon-borne Imaging Telescope (SuperBIT). The data used for estimating the backgrounds were obtained during three com missioning flights in 2016, 2018, and 2019 at altitudes ranging from 28 km to 34 km above sea level. For a valid comparison of the brightness measurements from the stratosphere with measurements from mountain-top ground-based observatories (taken at zenith on the darkest moonless night at high Galactic and high ecliptic latitudes), the stratospheric brightness levels were zodiacal light and diffuse Galactic light subtracted, and the airglow brightness was projected to zenith. The stratospheric brightness was measured around 5.5 hours, 3 hours, and 2 hours before the local sunrise time in 2016, 2018, and 2019 respectively. The $B$, $V$, $R$, and $I$ brightness levels in 2016 were 2.7, 1.0, 1.1, and 0.6 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The $B$, $V$, and $R$ brightness levels in 2018 were 1.3, 1.0, and 1.3 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The $U$ and $I$ brightness levels in 2019 were 0.1 mag arcsec$^{-2}$ brighter than the darkest ground-based measurements, whereas the $B$ and $V$ brightness levels were 0.8 and 0.6 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The lower sky brightness levels, stable photometry, and lower atmospheric absorption make stratospheric observations from a balloon-borne platform a unique tool for astronomy. We plan to continue this work in a future mid-latitude long duration balloon flight with SuperBIT.
158 - I. Plauchu-Frayn 2016
We present optical UBVRI zenith night sky brightness measurements collected on eighteen nights during 2013--2016 and SQM measurements obtained daily over twenty months during 2014--2016 at the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM) in Mexico. The UBVRI data is based upon CCD images obtained with the 0.84m and 2.12m telescopes, while the SQM data is obtained with a high-sensitivity, low-cost photometer. The typical moonless night sky brightness at zenith averaged over the whole period is U = 22.68, B = 23.10, V = 21.84, R = 21.04, I = 19.36, and SQM = 21.88 mag/square arcsec, once corrected for zodiacal light. We find no seasonal variation of the night sky brightness measured with the SQM. The typical night sky brightness values found at OAN-SPM are similar to those reported for other astronomical dark sites at a similar phase of the solar cycle. We find a trend of decreasing night sky brightness with decreasing solar activity during period of the observations. This trend implies that the sky has become darker by delta_U =0.7, delta_B =0.5, delta_V =0.3, delta_R =0.5 mag/square arcsec since early 2014 due to the present solar cycle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا