ﻻ يوجد ملخص باللغة العربية
Using data from the Helioseismic Magnetic Imager, we report on the amplitudes and phase relations of oscillations in quiet-Sun, plage, umbra and the polarity inversion line (PIL) of an active region NOAA$#$11158. We employ Fourier, wavelet and cross correlation spectra analysis. Waves with 5-minute periods are observed in umbra, PIL and plage with common phase values of ${phi}(v,I)=frac{pi}{2}$, ${phi}(v,B_{los})=-frac{pi}{2}$. In addition, ${phi}(I,B_{los})=pi$ in plage are observed. These phase values are consistent with slow standing or fast standing surface sausage wave modes. The line width variations, and their phase relations with intensity and magnetic oscillations, show different values within the plage and PIL regions, which may offer a way to further differentiate wave mode mechanics. Significant Doppler velocity oscillations are present along the PIL, meaning that plasma motion is perpendicular to the magnetic field lines, a signature of Alv`enic waves. A time-distance diagram along a section of the PIL shows Eastward propagating Doppler oscillations converting into magnetic oscillations; the propagation speeds range between 2$-$6 km s$^{-1}$. Lastly, a 3-minute wave is observed in select regions of the umbra in the magnetogram data.
We use SDO/HMI and SOLIS/VSM photospheric magnetic field measurements to model the force-free coronal field above a solar active region, assuming magnetic forces to dominate. We take measurement uncertainties caused by, e.g., noise and the particular
We take advantage of the HMI/SDO instrument to study the naked emergence of active regions from the first imprints of the magnetic field on the solar surface. To this end, we followed the first 24 hours in the life of two rather isolated ARs that app
We gave an extensive study for the quasi-periodic perturbations on the time profiles of the line of sight (LOS) magnetic field in 10x10 sub-areas in a solar plage region (corresponds to a facula on the photosphere). The perturbations are found to be
Using high spatial and temporal resolution H$alpha$ data from the New Vacuum Solar Telescope (NVST) and simultaneous observations from the Solar Dynamics Observatory (SDO), we present a rare event on the interaction between two filaments (F1 and F2)
Aims: The statistics of the photospheric granulation pattern are investigated using continuum images observed by Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) taken at 6713~AA. Methods: The supergranular boundaries can be e