ﻻ يوجد ملخص باللغة العربية
We investigate the pure annihilation type radiative $B$ meson decays $B^0 to phi gamma$ and $B_s to rho^0(omega)gamma$ in the soft-collinear effective theory. We consider three types of contributions to the decay amplitudes, including the direct annihilation topology, the contribution from the electro-magnetic penguin operator and the contribution of the neutral vector meson mixings. The numerical analysis shows that the decay amplitudes are dominated by the $omega-phi$ mixing effect in the $B^0 to phigamma$ and $B_s to omegagamma$ modes. The corresponding decay branching ratios are enhanced about three orders of magnitudes relative to the pure annihilation type contribution in these two decay channels. The decay rate of $B_s to rho^0gamma$ is much smaller than that of $B_s to omegagamma$ because of the smaller $rho^0-phi$ mixing. The predicted branching ratios $B(B^{0}rightarrowphigamma)=(3.99^{+1.67}_{-1.46} )times10^{-9},,B(B_srightarrowomegagamma)=(2.01^{+0.81}_{-0.71} )times10^{-7}$ are to be tested by the Belle-II and LHC-b experiments.
Pure leptonic radiative decays of heavy-light mesons are calculated using a very simple non-relativistic model. Dominant contribution originates from photon emission from light initial quark. We find $BR(B^pmtoell ugamma)sim3.5times10^{-6}$ and $BR(D
We study a set of exclusive decay modes of the Standard Model Higgs boson into a vector meson and a dilepton pair: $hto V ell^+ ell^-$, with $V=Upsilon, J/psi,phi$, and $ell=mu, tau$, determining the decay rates, the dilepton mass spectra and the $V$
We give a summary of the discussions in Working Group V of the CKM2010 workshop dealing with determinations of the angle gamma of the unitarity triangle of the Cabibbo-Kobayashi-Maskawa matrix from B-meson decays into charmed final states.
Some years ago, a method was proposed for measuring the CP-violating phase gamma using pairs of two-body decays that are related by U-spin reflection (d <-> s). In this paper we adapt this method to charmless B -> PPP decays. Time-dependent Dalitz-pl
It has been pointed out by Gronau and Rosner that the angle gamma of the unitarity triangle could be determined by combining future results on B_s and B_d decays to K pi. Here we show that it is important to include in the analysis the information on