ﻻ يوجد ملخص باللغة العربية
In the standard model of charge density wave (CDW) transitions, the displacement along a single phonon mode lowers the total electronic energy by creating a gap at the Fermi level, making the CDW a metal--insulator transition. Here, using scanning tunneling microscopy and spectroscopy and ab initio calculations, we show that VS$_2$ realizes a CDW which stands out of this standard model. There is a full CDW gap residing in the unoccupied states of monolayer VS$_2$. At the Fermi level, the CDW induces a topological metal-metal (Lifshitz) transition. Non-linear coupling of transverse and longitudinal phonons is essential for the formation of the CDW and the full gap above the Fermi level. Additionally, x-ray magnetic circular dichroism reveals the absence of net magnetization in this phase, pointing to coexisting charge and spin density waves in the ground state.
We report experimental evidence of charge density wave (CDW) transition in monolayer 1T-VTe$_2$ film. 4$times$4 reconstruction peaks are observed by low energy electron diffraction below the transition temperature $T_{CDW}$ = 186 K. Angle-resolved ph
In this paper, the completed investigation of a possible superconducting phase in monolayer indium selenide is determined using first-principles calculations for both the hole and electron doping systems. The hole-doped dependence of the Fermi surfac
Recently fabricated InSe monolayers exhibit remarkable characteristics that indicate the potential of this material to host a number of many-body phenomena. Here, we consistently describe collective electronic effects in hole-doped InSe monolayers us
Materials with reduced dimensionality often exhibit exceptional properties that are different from their bulk counterparts. Here we report the emergence of a commensurate 2 $times$ 2 charge density wave (CDW) in monolayer and bilayer SnSe$_2$ films b
Despite the progress made in successful prediction of many classes of weakly-correlated topological materials, it is not clear how a topological order can emerge from interacting orders and whether or not a charge ordered topological state can exist